Tag Archives: roller chain parts

China Hot selling Industrial Transmission Gear Reducer Conveyor Parts 16A Ss-2 Duplex Stainless Steel Short Pitch Roller Chains and Bush Chain

Product Description

Chain No.

Pitch

P
mm

Roller diameter

d1max
mm

Width between inner plates
b1min
mm
Pin diameter

d2max
mm

Pin length Inner plate depth
h2max
mm
Plate thickness

t/Tmax
mm

Transverse pitch

Pt
mm

Breaking load

Q
kN/lbf

Weight per meter
q kg/m
Lmax
mm
Lcmax
mm
16ASS-2 25.4-0-0. p. 211. Retrieved 17 May 2-0-0. p. 86. Retrieved 30 January 2015.
 Green 1996, pp. 2337-2361
 “ANSI G7 Standard Roller Chain – Tsubaki Europe”. Tsubaki Europe. Tsubakimoto Europe B.V. Retrieved 18 June 2.
External links
    Wikimedia Commons has media related to Roller chains.
The Complete Xihu (West Lake) Dis. to Chain
Categories: Chain drivesMechanical power transmissionMechanical power control
Company Workshop
Company Certifications
Safe And Efficient Delivery
Q:Why choose us ?
A. we are a manufacturer, we have manufactured valve for over 20 years .
B. Reliable Quality Assurance System;
C. Cutting-Edge Computer-Controlled CNC Machines;
D. Bespoke Solutions from Highly Experienced Specialists;
E. Customization and OEM Available for Specific Application;
F. Extensive Inventory of Spare Parts and Accessories;
G. Well-Developed CHINAMFG Marketing Network;
H. Efficient After-Sale Service System

Q. what is your payment term? 
 A: 30% TT deposit, 70% balance T/T before shipping.

Q:Can we print our logo on your products?
A: yes, we offer OEM/ODM service, we support the customized logo, size, package,etc.

Q: Can you make chains according to my CAD drawings?
A: Yes. Besides the regular standard chains, we produce non-standard and custom-design products to meet the specific technical requirements. In reality, a sizable portion of our production capacity is assigned to make non-standard products.

 
 Q: what is your main market?
A: North America, South America, Eastern Europe, Western Europe, Southeast Asia, Africa, Oceania, Mid East, Eastern Asia,
 
Q: Can I get samples from your factory?
A: Yes, Samples can be provided.
 
Q: If products have some quality problem, how would you deal with?
A: We will responsible for all the quality problems.
 

 

Standard or Nonstandard: Standard, Standard
Application: Textile Machinery, Garment Machinery, Electric Cars, Motorcycle, Food Machinery, Agricultural Machinery, Textile Machinery, Garment Machinery, Conveyer Equipment, Packaging Machinery, Electric Cars, Motorcycle, Food Machinery, Marine, Mining Equipment, Agricultural Machinery, Car, Food and Beverage Industry, Motorcycle Parts
Surface Treatment: Polishing, Polishing
Samples:
US$ 0/Meter
1 Meter(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

bush chain

How does a bush chain handle reverse rotations and backdrives?

A bush chain is designed to handle reverse rotations and backdrives effectively. Here’s how it works:

1. Non-Slip Design: Bush chains are typically constructed with interlocking link plates and precision-fitted bushings. This design ensures that the chain maintains a positive engagement with the sprockets, preventing slippage or disengagement during reverse rotations or backdrives.

2. Tooth Profile: The sprockets used with bush chains are designed with a specific tooth profile that helps in maintaining proper chain engagement even during reverse rotations. The tooth shape ensures a smooth transition of the chain from one tooth to another, minimizing the risk of skipping or jumping off the sprocket.

3. Backstop Mechanisms: In some applications where backdrives or reverse rotations are more common, additional backstop mechanisms may be employed. These mechanisms prevent the chain from moving in the undesired direction by utilizing devices such as one-way clutches or backstop sprockets.

4. Proper Chain Tension: Maintaining proper chain tension is crucial for reliable operation in reverse rotations and backdrives. Adequate tension ensures that the chain remains engaged with the sprockets and minimizes the possibility of slippage.

Overall, bush chains are designed to handle reverse rotations and backdrives without compromising their performance and reliability. However, it is important to consider the specific application requirements and consult with chain manufacturers or experts to ensure the selection of the appropriate bush chain design and components for the desired operating conditions.

bush chain

Can a bush chain be used in corrosive or harsh environments?

Yes, a bush chain can be used in corrosive or harsh environments, but it requires careful selection and proper maintenance to ensure optimal performance and longevity. Here are some considerations:

1. Material Selection: When operating in corrosive environments, it is crucial to select a bush chain made from corrosion-resistant materials such as stainless steel or specialty alloys. These materials offer enhanced resistance to corrosion and chemical attack.

2. Coatings and Surface Treatments: Applying coatings or surface treatments to the bush chain can provide additional protection against corrosion. For example, coatings like zinc plating, nickel plating, or chemical treatments can help inhibit rust and corrosion.

3. Sealing and Protection: In harsh environments, it is essential to protect the bush chain from contaminants and corrosive substances. Enclosing the chain in a protective housing or using seals, covers, or boots can help prevent the entry of corrosive agents and debris.

4. Proper Lubrication: Adequate lubrication is crucial for reducing friction and preventing corrosion. Choose lubricants specifically designed for use in corrosive environments, such as those with anti-corrosion additives. Regular lubrication maintenance is necessary to ensure the chain remains well-lubricated and protected.

5. Cleaning and Maintenance: Regular cleaning and maintenance are vital to remove any corrosive substances or contaminants that may have accumulated on the chain. This includes thorough cleaning, inspection, and re-lubrication as necessary.

It is important to consult with chain manufacturers or industry experts to determine the most suitable bush chain and maintenance practices for the specific corrosive or harsh environment. By implementing these measures, a bush chain can effectively operate and withstand the challenges posed by corrosive or harsh conditions.

bush chain

Can a bush chain be used in high-load applications?

Yes, bush chains are commonly used in high-load applications due to their robust design and ability to handle heavy loads. The construction of a bush chain allows it to transmit significant amounts of force and torque, making it suitable for demanding industrial applications.

Bush chains are designed with solid bushings and precision rollers that provide excellent load-carrying capacity. The bushings act as a bearing surface between the pins and the rollers, reducing friction and allowing for smooth rotation under high loads.

Furthermore, bush chains are available in various sizes and configurations to accommodate different load requirements. They are made from durable materials such as alloy steel or stainless steel, which further enhances their strength and load-bearing capabilities.

When selecting a bush chain for a high-load application, it is important to consider factors such as the anticipated load magnitude, operating conditions, and the desired safety margin. Proper lubrication and regular maintenance are also essential to ensure optimal performance and extend the service life of the bush chain in high-load applications.

Overall, bush chains are a reliable choice for transmitting high loads and are widely used in industries such as mining, construction, heavy machinery, and material handling.

China Hot selling Industrial Transmission Gear Reducer Conveyor Parts 16A Ss-2 Duplex Stainless Steel Short Pitch Roller Chains and Bush Chain  China Hot selling Industrial Transmission Gear Reducer Conveyor Parts 16A Ss-2 Duplex Stainless Steel Short Pitch Roller Chains and Bush Chain
editor by CX 2023-11-08

China best Industrial Transmission Gear Reducer Conveyor Parts 16A Ss-2 Duplex Stainless Steel Short Pitch Roller Chains and Bush Chain

Product Description

Chain No.

Pitch

P
mm

Roller diameter

d1max
mm

Width between inner plates
b1min
mm
Pin diameter

d2max
mm

Pin length Inner plate depth
h2max
mm
Plate thickness

t/Tmax
mm

Transverse pitch

Pt
mm

Breaking load

Q
kN/lbf

Weight per meter
q kg/m
Lmax
mm
Lcmax
mm
16ASS-2 25.4-0-0. p. 211. Retrieved 17 May 2-0-0. p. 86. Retrieved 30 January 2015.
 Green 1996, pp. 2337-2361
 “ANSI G7 Standard Roller Chain – Tsubaki Europe”. Tsubaki Europe. Tsubakimoto Europe B.V. Retrieved 18 June 2.
External links
    Wikimedia Commons has media related to Roller chains.
The Complete Xihu (West Lake) Dis. to Chain
Categories: Chain drivesMechanical power transmissionMechanical power control
Company Workshop
Company Certifications
Safe And Efficient Delivery
Q:Why choose us ?
A. we are a manufacturer, we have manufactured valve for over 20 years .
B. Reliable Quality Assurance System;
C. Cutting-Edge Computer-Controlled CNC Machines;
D. Bespoke Solutions from Highly Experienced Specialists;
E. Customization and OEM Available for Specific Application;
F. Extensive Inventory of Spare Parts and Accessories;
G. Well-Developed CHINAMFG Marketing Network;
H. Efficient After-Sale Service System

Q. what is your payment term? 
 A: 30% TT deposit, 70% balance T/T before shipping.

Q:Can we print our logo on your products?
A: yes, we offer OEM/ODM service, we support the customized logo, size, package,etc.

Q: Can you make chains according to my CAD drawings?
A: Yes. Besides the regular standard chains, we produce non-standard and custom-design products to meet the specific technical requirements. In reality, a sizable portion of our production capacity is assigned to make non-standard products.

 
 Q: what is your main market?
A: North America, South America, Eastern Europe, Western Europe, Southeast Asia, Africa, Oceania, Mid East, Eastern Asia,
 
Q: Can I get samples from your factory?
A: Yes, Samples can be provided.
 
Q: If products have some quality problem, how would you deal with?
A: We will responsible for all the quality problems.
 

 

Standard or Nonstandard: Standard, Standard
Application: Textile Machinery, Garment Machinery, Electric Cars, Motorcycle, Food Machinery, Agricultural Machinery, Textile Machinery, Garment Machinery, Conveyer Equipment, Packaging Machinery, Electric Cars, Motorcycle, Food Machinery, Marine, Mining Equipment, Agricultural Machinery, Car, Food and Beverage Industry, Motorcycle Parts
Surface Treatment: Polishing, Polishing
Samples:
US$ 0/Meter
1 Meter(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

bush chain

What are the benefits of using a corrosion-resistant bush chain?

A corrosion-resistant bush chain offers several advantages in various applications where exposure to moisture, chemicals, or other corrosive elements is a concern. Here are the key benefits:

1. Extended service life: Corrosion-resistant bush chains are specifically designed to withstand corrosive environments, resulting in a longer service life compared to standard chains. They are resistant to rust, oxidation, and other forms of corrosion, minimizing the risk of premature failure.

2. Reliable performance: By utilizing corrosion-resistant materials, the bush chain maintains its structural integrity and mechanical properties even in corrosive conditions. This ensures reliable and consistent performance over an extended period.

3. Reduced maintenance and downtime: Corrosion-resistant bush chains require less maintenance compared to standard chains. They are less susceptible to damage and wear caused by corrosion, reducing the frequency of lubrication, inspection, and replacement. This results in lower maintenance costs and less downtime for the equipment.

4. Improved safety: Corrosion can weaken a chain, compromising its strength and integrity. By using a corrosion-resistant bush chain, the risk of chain failure and potential accidents is significantly reduced, enhancing workplace safety.

5. Versatility in harsh environments: Corrosion-resistant bush chains can be used in a wide range of applications and industries where exposure to moisture, chemicals, saltwater, or other corrosive agents is prevalent. They are commonly employed in marine environments, chemical processing plants, wastewater treatment facilities, food processing plants, and outdoor equipment.

6. Cost-effective solution: While corrosion-resistant bush chains may have a higher initial cost compared to standard chains, their extended lifespan and reduced maintenance requirements result in long-term cost savings. The lower frequency of chain replacement, repairs, and associated downtime contributes to overall cost-effectiveness.

It is important to select the appropriate corrosion-resistant bush chain based on the specific corrosive agents and environmental conditions it will be exposed to. Consulting with chain manufacturers or industry experts can help in choosing the right chain material and coating for optimal corrosion resistance.

bush chain

What are the noise levels associated with a bush chain?

The noise levels associated with a bush chain can vary depending on several factors. Here are some considerations:

1. Lubrication: Proper lubrication plays a significant role in reducing noise levels. Insufficient lubrication or using the wrong type of lubricant can increase friction and generate more noise. Regular lubrication maintenance is necessary to ensure smooth operation and minimize noise.

2. Chain Tension: Maintaining proper chain tension is essential for reducing noise. Excessive slack or excessive tension can lead to increased vibration and noise. It is important to follow the manufacturer’s recommendations for the correct tensioning of the bush chain.

3. Chain Quality: The quality and design of the bush chain can also affect noise levels. High-quality bush chains are engineered to minimize vibration and noise generation during operation.

4. External Factors: Other external factors such as the design of the sprockets, the surrounding environment, and the presence of any additional components or accessories can influence noise levels. Proper alignment of the chain and sprockets, as well as the use of noise-dampening materials or guards, can help reduce noise.

It is important to note that while bush chains may generate some noise during operation, advancements in chain design and materials have significantly reduced noise levels in modern chains. Additionally, regular maintenance and proper installation can further minimize noise levels associated with a bush chain.

bush chain

Can a bush chain be used in high-speed applications?

Yes, bush chains can be used in high-speed applications, but there are certain considerations to keep in mind. While bush chains are known for their durability and strength, they may have limitations in terms of their maximum allowable speed due to factors such as centrifugal forces and dynamic loads.

The speed capability of a bush chain depends on several factors, including the chain design, material, lubrication, and operating conditions. It is important to select a bush chain that is specifically designed for high-speed applications and to follow the manufacturer’s recommendations regarding speed limits.

In high-speed applications, it is crucial to ensure proper chain tensioning and alignment to minimize vibration and reduce the risk of chain failure. Regular maintenance, including lubrication and inspection, is also essential to prevent premature wear and extend the service life of the chain.

Additionally, the selection of a suitable lubricant is important for high-speed bush chain applications. The lubricant should have excellent film strength and provide sufficient protection against wear and friction at high speeds. It is recommended to consult with the chain manufacturer or a lubrication specialist to determine the most suitable lubrication solution.

Overall, while bush chains can be used in high-speed applications, it is essential to consider the specific requirements and limitations of the application and to ensure proper maintenance and lubrication to achieve reliable and efficient operation.

China best Industrial Transmission Gear Reducer Conveyor Parts 16A Ss-2 Duplex Stainless Steel Short Pitch Roller Chains and Bush Chain  China best Industrial Transmission Gear Reducer Conveyor Parts 16A Ss-2 Duplex Stainless Steel Short Pitch Roller Chains and Bush Chain
editor by CX 2023-11-07

China OEM Manufacturer 10ass Simplex Stainless Steel Gearbox Belt Transmission Parts Engineering and Construction Machinery Short Pitch Roller Chains and Bush Chain

Product Description

Chain No. Pitch

P
mm

Roller diameter

d1max
mm

Width between inner plates
b1min
mm
Pin diameter

d2max
mm

Pin length Inner plate depth
h2max
mm
Plate thickness
t/Tmax
mm
Transverse pitch
Pt
mm
Breaking load

Q
kN/lbf

Weight per meter
q
kg/m
Lmax
mm
Lcmax
mm
12BSS-3 19.050 12.07 11.68 5.72 61.50 63.10 16.00 1.85 19.46 55.5/12477 3.71

*Bush chain:d1 in the table indicates the external diameter of the bush
*Straight side plates
Stainless steel chains are suitable for corrosive conditions involving food,chemicals pharmaceuticals,etc.and also suitable for high and low temperature conditions.

productList?selectedSpotlightId=lQfxnMwuuTRv

Products Image

Roller chain
Roller chain or bush roller chain is the type of chain drive most commonly used for transmission of mechanical power on many kinds of domestic, industrial and agricultural machinery, including conveyors, wire- and tube-drawing machines, printing presses, cars, motorcycles, and bicycles. It consists of a series of short cylindrical rollers held together by side links. It is driven by a toothed wheel called a sprocket. It is a simple, reliable, and efficient[1] means of power transmission.

Though CHINAMFG Renold is credited with inventing the roller chain in 1880, sketches by Leonardo da Vinci in the 16th century show a chain with a roller bearing.

Construction of the chain
Two different sizes of roller chain, showing construction.
There are 2 types of links alternating in the bush roller chain. The first type is inner links, having 2 inner plates held together by 2 sleeves or bushings CHINAMFG which rotate 2 rollers. Inner links alternate with the second type, the outer links, consisting of 2 outer plates held together by pins passing through the bushings of the inner links. The “bushingless” roller chain is similar in operation though not in construction; instead of separate bushings or sleeves holding the inner plates together, the plate has a tube stamped into it protruding from the hole which serves the same purpose. This has the advantage of removing 1 step in assembly of the chain.

The roller chain design reduces friction compared to simpler designs, resulting in higher efficiency and less wear. The original power transmission chain varieties lacked rollers and bushings, with both the inner and outer plates held by pins which directly contacted the sprocket teeth; however this configuration exhibited extremely rapid wear of both the sprocket teeth, and the plates where they pivoted on the pins. This problem was partially solved by the development of bushed chains, with the pins holding the outer plates passing through bushings or sleeves connecting the inner plates. This distributed the wear over a greater area; however the teeth of the sprockets still wore more rapidly than is desirable, from the sliding friction against the bushings. The addition of rollers surrounding the bushing sleeves of the chain and provided rolling contact with the teeth of the sprockets resulting in excellent resistance to wear of both sprockets and chain as well. There is even very low friction, as long as the chain is sufficiently lubricated. Continuous, clean, lubrication of roller chains is of primary importance for efficient operation as well as correct tensioning.

Lubrication
Many driving chains (for example, in factory equipment, or driving a camshaft inside an internal combustion engine) operate in clean environments, and thus the wearing surfaces (that is, the pins and bushings) are safe from precipitation and airborne grit, many even in a sealed environment such as an oil bath. Some roller chains are designed to have o-rings built into the space between the outside link plate and the inside roller link plates. Chain manufacturers began to include this feature in 1971 after the application was invented by Joseph Montano while working for Whitney Chain of Hartford, Connecticut. O-rings were included as a way to improve lubrication to the links of power transmission chains, a service that is vitally important to extending their working life. These rubber fixtures form a barrier that holds factory applied lubricating grease inside the pin and bushing wear areas. Further, the rubber o-rings prevent dirt and other contaminants from entering inside the chain linkages, where such particles would otherwise cause significant wear.[citation needed]

There are also many chains that have to operate in dirty conditions, and for size or operational reasons cannot be sealed. Examples include chains on farm equipment, bicycles, and chain saws. These chains will necessarily have relatively high rates of wear, particularly when the operators are prepared to accept more friction, less efficiency, more noise and more frequent replacement as they neglect lubrication and adjustment.

Many oil-based lubricants attract dirt and other particles, eventually forming an CHINAMFG paste that will compound wear on chains. This problem can be circumvented by use of a “dry” PTFE spray, which forms a solid film after application and repels both particles and moisture.

Variants in design

Layout of a roller chain: 1. Outer plate, 2. Inner plate, 3. Pin, 4. Bushing, 5. Roller
If the chain is not being used for a high wear application (for instance if it is just transmitting motion from a hand-operated lever to a control shaft on a machine, or a sliding door on an oven), then 1 of the simpler types of chain may still be used. Conversely, where extra strength but the smooth drive of a smaller pitch is required, the chain may be “siamesed”; instead of just 2 rows of plates on the outer sides of the chain, there may be 3 (“duplex”), 4 (“triplex”), or more rows of plates running parallel, with bushings and rollers between each adjacent pair, and the same number of rows of teeth running in parallel on the sprockets to match. Timing chains on automotive engines, for example, typically have multiple rows of plates called strands.

Roller chain is made in several sizes, the most common American National Standards Institute (ANSI) standards being 40, 50, 60, and 80. The first digit(s) indicate the pitch of the chain in eighths of an inch, with the last digit being 0 for standard chain, 1 for lightweight chain, and 5 for bushed chain with no rollers. Thus, a chain with half-inch pitch would be a #40 while a #160 sprocket would have teeth spaced 2 inches apart, etc. Metric pitches are expressed in sixteenths of an inch; thus a metric #8 chain (08B-1) would be equivalent to an ANSI #40. Most roller chain is made from plain carbon or alloy steel, but stainless steel is used in food processing machinery or other places where lubrication is a problem, and nylon or brass are occasionally seen for the same reason.

Roller chain is ordinarily hooked up using a master link (also known as a connecting link), which typically has 1 pin held by a horseshoe clip rather than friction fit, allowing it to be inserted or removed with simple tools. Chain with a removable link or pin is also known as cottered chain, which allows the length of the chain to be adjusted. Half links (also known as offsets) are available and are used to increase the length of the chain by a single roller. Riveted roller chain has the master link (also known as a connecting link) “riveted” or mashed on the ends. These pins are made to be durable and are not removable.

Use

An example of 2 ‘ghost’ sprockets tensioning a triplex roller chain system
Roller chains are used in low- to mid-speed drives at around 600 to 800 feet per minute; however, at higher speeds, around 2,000 to 3,000 feet per minute, V-belts are normally used due to wear and noise issues.
A bicycle chain is a form of roller chain. Bicycle chains may have a master link, or may require a chain tool for removal and installation. A similar but larger and thus stronger chain is used on most motorcycles although it is sometimes replaced by either a toothed belt or a shaft drive, which offer lower noise level and fewer maintenance requirements.
The great majority of automobile engines use roller chains to drive the camshaft(s). Very high performance engines often use gear drive, and starting in the early 1960s toothed belts were used by some manufacturers.
Chains are also used in forklifts using hydraulic rams as a pulley to raise and lower the carriage; however, these chains are not considered roller chains, but are classified as lift or leaf chains.
Chainsaw cutting chains superficially resemble roller chains but are more closely related to leaf chains. They are driven by projecting drive links which also serve to locate the chain CHINAMFG the bar.

Sea Harrier FA.2 ZA195 front (cold) vector thrust nozzle – the nozzle is rotated by a chain drive from an air motor
A perhaps unusual use of a pair of motorcycle chains is in the Harrier Jump Jet, where a chain drive from an air motor is used to rotate the movable engine nozzles, allowing them to be pointed downwards for hovering flight, or to the rear for normal CHINAMFG flight, a system known as Thrust vectoring.
 

Wear

The effect of wear on a roller chain is to increase the pitch (spacing of the links), causing the chain to grow longer. Note that this is due to wear at the pivoting pins and bushes, not from actual stretching of the metal (as does happen to some flexible steel components such as the hand-brake cable of a motor vehicle).

With modern chains it is unusual for a chain (other than that of a bicycle) to wear until it breaks, since a worn chain leads to the rapid onset of wear on the teeth of the sprockets, with ultimate failure being the loss of all the teeth on the sprocket. The sprockets (in particular the smaller of the two) suffer a grinding motion that puts a characteristic hook shape into the driven face of the teeth. (This effect is made worse by a chain improperly tensioned, but is unavoidable no matter what care is taken). The worn teeth (and chain) no longer provides smooth transmission of power and this may become evident from the noise, the vibration or (in car engines using a timing chain) the variation in ignition timing seen with a timing light. Both sprockets and chain should be replaced in these cases, since a new chain on worn sprockets will not last long. However, in less severe cases it may be possible to save the larger of the 2 sprockets, since it is always the smaller 1 that suffers the most wear. Only in very light-weight applications such as a bicycle, or in extreme cases of improper tension, will the chain normally jump off the sprockets.

The lengthening due to wear of a chain is calculated by the following formula:

{\displaystyle \%=((M-(S*P))/(S*P))*100}

 

M = the length of a number of links measured

S = the number of links measured

P = Pitch

In industry, it is usual to monitor the movement of the chain tensioner (whether manual or automatic) or the exact length of a drive chain (one rule of thumb is to replace a roller chain which has elongated 3% on an adjustable drive or 1.5% on a fixed-center drive). A simpler method, particularly suitable for the cycle or motorcycle user, is to attempt to pull the chain away from the larger of the 2 sprockets, whilst ensuring the chain is taut. Any significant movement (e.g. making it possible to see through a gap) probably indicates a chain worn up to and beyond the limit. Sprocket damage will result if the problem is ignored. Sprocket wear cancels this effect, and may mask chain wear.

Chain strength

The most common measure of roller chain’s strength is tensile strength. Tensile strength represents how much load a chain can withstand under a one-time load before breaking. Just as important as tensile strength is a chain’s fatigue strength. The critical factors in a chain’s fatigue strength is the quality of steel used to manufacture the chain, the heat treatment of the chain components, the quality of the pitch hole fabrication of the linkplates, and the type of shot plus the intensity of shot peen coverage on the linkplates. Other factors can include the thickness of the linkplates and the design (contour) of the linkplates. The rule of thumb for roller chain operating on a continuous drive is for the chain load to not exceed a mere 1/6 or 1/9 of the chain’s tensile strength, depending on the type of master links used (press-fit vs. slip-fit)[citation needed]. Roller chains operating on a continuous drive beyond these thresholds can and typically do fail prematurely via linkplate fatigue failure.

The standard minimum ultimate strength of the ANSI 29.1 steel chain is 12,500 x (pitch, in inches)2. X-ring and O-Ring chains greatly decrease wear by means of internal lubricants, increasing chain life. The internal lubrication is inserted by means of a vacuum when riveting the chain together.

Chain standards

Standards organizations (such as ANSI and ISO) maintain standards for design, dimensions, and interchangeability of transmission chains. For example, the following Table shows data from ANSI standard B29.1-2011 (Precision Power Transmission Roller Chains, Attachments, and Sprockets) developed by the American Society of Mechanical Engineers (ASME). See the references[8][9][10] for additional information.

ASME/ANSI B29.1-2011 Roller Chain Standard SizesSizePitchMaximum Roller DiameterMinimum Ultimate Tensile StrengthMeasuring Load25.

For mnemonic purposes, below is another presentation of key dimensions from the same standard, expressed in fractions of an inch (which was part of the thinking behind the choice of preferred numbers in the ANSI standard):

Notes:
1. The pitch is the distance between roller centers. The width is the distance between the link plates (i.e. slightly more than the roller width to allow for clearance).
2. The right-hand digit of the standard denotes 0 = normal chain, 1 = lightweight chain, 5 = rollerless bushing chain.
3. The left-hand digit denotes the number of eighths of an inch that make up the pitch.
4. An “H” following the standard number denotes heavyweight chain. A hyphenated number following the standard number denotes double-strand (2), triple-strand (3), and so on. Thus 60H-3 denotes number 60 heavyweight triple-strand chain.
 A typical bicycle chain (for derailleur gears) uses narrow 1⁄2-inch-pitch chain. The width of the chain is variable, and does not affect the load capacity. The more sprockets at the rear wheel (historically 3-6, nowadays 7-12 sprockets), the narrower the chain. Chains are sold according to the number of speeds they are designed to work with, for example, “10 speed chain”. Hub gear or single speed bicycles use 1/2″ x 1/8″ chains, where 1/8″ refers to the maximum thickness of a sprocket that can be used with the chain.

Typically chains with parallel shaped links have an even number of links, with each narrow link followed by a broad one. Chains built up with a uniform type of link, narrow at 1 and broad at the other end, can be made with an odd number of links, which can be an advantage to adapt to a special chainwheel-distance; on the other side such a chain tends to be not so strong.

Roller chains made using ISO standard are sometimes called as isochains.
More Products

 

Company Workshop

Company Certificates

Package for reference

Q:Why choose us ?
A. we are a manufacturer, we have manufactured valve for over 20 years .
B. Reliable Quality Assurance System;
C. Cutting-Edge Computer-Controlled CNC Machines;
D. Bespoke Solutions from Highly Experienced Specialists;
E. Customization and OEM Available for Specific Application;
F. Extensive Inventory of Spare Parts and Accessories;
G. Well-Developed CHINAMFG Marketing Network;
H. Efficient After-Sale Service System

Q. what is your payment term? 
 A: 30% TT deposit, 70% balance T/T before shipping.

Q:Can we print our logo on your products?
A: yes, we offer OEM/ODM service, we support the customized logo, size, package,etc.

Q: Can you make chains according to my CAD drawings?
A: Yes. Besides the regular standard chains, we produce non-standard and custom-design products to meet the specific technical requirements. In reality, a sizable portion of our production capacity is assigned to make non-standard products.

 
 Q: what is your main market?
A: North America, South America, Eastern Europe, Western Europe, Southeast Asia, Africa, Oceania, Mid East, Eastern Asia,
 
Q: Can I get samples from your factory?
A: Yes, Samples can be provided.

 

 

Standard or Nonstandard: Standard, Standard
Application: Textile Machinery, Garment Machinery, Electric Cars, Motorcycle, Food Machinery, Agricultural Machinery, Textile Machinery, Garment Machinery, Conveyer Equipment, Packaging Machinery, Electric Cars, Motorcycle, Food Machinery, Marine, Mining Equipment, Agricultural Machinery, Car, Food and Beverage Industry, Motorcycle Parts
Surface Treatment: Polishing, Polishing
Structure: Roller Chain, Rotransmission Chain, Pulling Chain, Driving Chain
Material: Stainless Steel, Rubber
Type: Bush Chain, Transmission Chain, Pulling Chain, Driving Chain
Samples:
US$ 0/Meter
1 Meter(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

bush chain

Can a bush chain be used in continuous operation applications?

Yes, a bush chain can be used in continuous operation applications. Continuous operation refers to a scenario where the chain is constantly in motion without significant periods of rest.

Bush chains are designed to handle continuous operation and are commonly used in various industrial applications that require continuous power transmission or material handling. They are known for their durability, reliability, and ability to withstand prolonged use.

When selecting a bush chain for continuous operation, it is important to consider factors such as the chain’s load capacity, speed rating, lubrication requirements, and overall durability. It’s crucial to choose a chain that is specifically designed for continuous operation to ensure optimal performance and longevity.

Regular maintenance, including proper lubrication and periodic inspections, is essential to ensure the smooth operation and longevity of the bush chain in continuous applications. Following the manufacturer’s guidelines for maintenance and lubrication intervals is crucial to prevent premature wear and ensure reliable operation.

Overall, bush chains are well-suited for continuous operation applications and provide a reliable means of power transmission or material handling in various industries.

bush chain

How does a bush chain contribute to overall system efficiency?

A bush chain contributes to overall system efficiency in several ways:

1. Power transmission: Bush chains are designed to efficiently transmit power from the driving source to the driven machinery or equipment. They have high tensile strength and can effectively transfer rotational motion, allowing for the efficient transfer of power from the motor or engine to the intended application.

2. Load-bearing capacity: Bush chains are capable of handling heavy loads and are designed to withstand the stresses associated with transmitting power in industrial applications. By efficiently transferring the load, they minimize power losses and reduce the need for additional components or systems.

3. Smooth and reliable operation: Bush chains are constructed with precision-engineered components that work together to provide smooth and reliable operation. They have low friction between the bushings and pins, reducing energy losses and minimizing wear and tear. This results in improved overall system efficiency.

4. Minimal maintenance requirements: Bush chains are designed to operate with minimal maintenance. They have self-lubricating capabilities, reducing the need for frequent lubrication. This not only saves time and resources but also ensures consistent performance and extends the chain’s lifespan.

5. Flexibility and adaptability: Bush chains can be customized and adapted to suit specific application requirements. They are available in various sizes, pitches, and configurations, allowing for easy integration into different systems. This flexibility enhances system efficiency by providing the optimal chain solution for the specific application.

Overall, a properly selected and maintained bush chain contributes to the overall efficiency of a system by minimizing power losses, reducing wear and tear, and providing reliable and smooth operation. It ensures effective power transmission and load-bearing capacity, resulting in improved productivity and reduced downtime.

bush chain

Can a bush chain be used in high-load applications?

Yes, bush chains are commonly used in high-load applications due to their robust design and ability to handle heavy loads. The construction of a bush chain allows it to transmit significant amounts of force and torque, making it suitable for demanding industrial applications.

Bush chains are designed with solid bushings and precision rollers that provide excellent load-carrying capacity. The bushings act as a bearing surface between the pins and the rollers, reducing friction and allowing for smooth rotation under high loads.

Furthermore, bush chains are available in various sizes and configurations to accommodate different load requirements. They are made from durable materials such as alloy steel or stainless steel, which further enhances their strength and load-bearing capabilities.

When selecting a bush chain for a high-load application, it is important to consider factors such as the anticipated load magnitude, operating conditions, and the desired safety margin. Proper lubrication and regular maintenance are also essential to ensure optimal performance and extend the service life of the bush chain in high-load applications.

Overall, bush chains are a reliable choice for transmitting high loads and are widely used in industries such as mining, construction, heavy machinery, and material handling.

China OEM Manufacturer 10ass Simplex Stainless Steel Gearbox Belt Transmission Parts Engineering and Construction Machinery Short Pitch Roller Chains and Bush Chain  China OEM Manufacturer 10ass Simplex Stainless Steel Gearbox Belt Transmission Parts Engineering and Construction Machinery Short Pitch Roller Chains and Bush Chain
editor by CX 2023-10-11

China Custom Transmission Chain 20A-6 a Series Short Pitch Precision Multiple Strand Roller Chains and Bush Chains with Motorcycle/Bicycle Parts

Product Description

A Series Short Pitch Precision Multiple Strand Roller Chains & Bush Chains

 

ANSI
Chain No.

Chain No.

Pitch

P
mm

Roller diameter

d1max
mm

Width between inner plates
b1min
mm
Pin diameter

d2max
mm

Pin length Inner plate depth
h2max
mm
Plate thickness

Tmax
mm

Transverse pitch
    Pt     mm
Tensile strength

Qmin
kN/lbf

Average tensile strength

Q0
kN

Weight per meter
q   kg/m
Lmax
mm
Lcmax
mm
100-6 20A-6 31.750 19.05 18.90 9.53 219.4 223.7 30.00 4.00 35.76 531.0/119452 584.10 23.36

 

 

ROLLER CHAIN

Roller chain or bush roller chain is the type of chain drive most commonly used for transmission of mechanical power on many kinds of domestic, industrial and agricultural machinery, including conveyors, wire- and tube-drawing machines, printing presses, cars, motorcycles, and bicycles. It consists of a series of short cylindrical rollers held together by side links. It is driven by a toothed wheel called a sprocket. It is a simple, reliable, and efficient means of power transmission.

CONSTRUCTION OF THE CHAIN

Two different sizes of roller chain, showing construction.
There are 2 types of links alternating in the bush roller chain. The first type is inner links, having 2 inner plates held together by 2 sleeves or bushings CZPT which rotate 2 rollers. Inner links alternate with the second type, the outer links, consisting of 2 outer plates held together by pins passing through the bushings of the inner links. The “bushingless” roller chain is similar in operation though not in construction; instead of separate bushings or sleeves holding the inner plates together, the plate has a tube stamped into it protruding from the hole which serves the same purpose. This has the advantage of removing 1 step in assembly of the chain.

The roller chain design reduces friction compared to simpler designs, resulting in higher efficiency and less wear. The original power transmission chain varieties lacked rollers and bushings, with both the inner and outer plates held by pins which directly contacted the sprocket teeth; however this configuration exhibited extremely rapid wear of both the sprocket teeth, and the plates where they pivoted on the pins. This problem was partially solved by the development of bushed chains, with the pins holding the outer plates passing through bushings or sleeves connecting the inner plates. This distributed the wear over a greater area; however the teeth of the sprockets still wore more rapidly than is desirable, from the sliding friction against the bushings. The addition of rollers surrounding the bushing sleeves of the chain and provided rolling contact with the teeth of the sprockets resulting in excellent resistance to wear of both sprockets and chain as well. There is even very low friction, as long as the chain is sufficiently lubricated. Continuous, clean, lubrication of roller chains is of primary importance for efficient operation as well as correct tensioning.

LUBRICATION

Many driving chains (for example, in factory equipment, or driving a camshaft inside an internal combustion engine) operate in clean environments, and thus the wearing surfaces (that is, the pins and bushings) are safe from precipitation and airborne grit, many even in a sealed environment such as an oil bath. Some roller chains are designed to have o-rings built into the space between the outside link plate and the inside roller link plates. Chain manufacturers began to include this feature in 1971 after the application was invented by Joseph Montano while working for Whitney Chain of Hartford, Connecticut. O-rings were included as a way to improve lubrication to the links of power transmission chains, a service that is vitally important to extending their working life. These rubber fixtures form a barrier that holds factory applied lubricating grease inside the pin and bushing wear areas. Further, the rubber o-rings prevent dirt and other contaminants from entering inside the chain linkages, where such particles would otherwise cause significant wear.[citation needed]

There are also many chains that have to operate in dirty conditions, and for size or operational reasons cannot be sealed. Examples include chains on farm equipment, bicycles, and chain saws. These chains will necessarily have relatively high rates of wear, particularly when the operators are prepared to accept more friction, less efficiency, more noise and more frequent replacement as they neglect lubrication and adjustment.

Many oil-based lubricants attract dirt and other particles, eventually forming an CZPT paste that will compound wear on chains. This problem can be circumvented by use of a “dry” PTFE spray, which forms a solid film after application and repels both particles and moisture.

VARIANTS DESIGN

Layout of a roller chain: 1. Outer plate, 2. Inner plate, 3. Pin, 4. Bushing, 5. Roller
If the chain is not being used for a high wear application (for instance if it is just transmitting motion from a hand-operated lever to a control shaft on a machine, or a sliding door on an oven), then 1 of the simpler types of chain may still be used. Conversely, where extra strength but the smooth drive of a smaller pitch is required, the chain may be “siamesed”; instead of just 2 rows of plates on the outer sides of the chain, there may be 3 (“duplex”), 4 (“triplex”), or more rows of plates running parallel, with bushings and rollers between each adjacent pair, and the same number of rows of teeth running in parallel on the sprockets to match. Timing chains on automotive engines, for example, typically have multiple rows of plates called strands.

Roller chain is made in several sizes, the most common American National Standards Institute (ANSI) standards being 40, 50, 60, and 80. The first digit(s) indicate the pitch of the chain in eighths of an inch, with the last digit being 0 for standard chain, 1 for lightweight chain, and 5 for bushed chain with no rollers. Thus, a chain with half-inch pitch would be a #40 while a #160 sprocket would have teeth spaced 2 inches apart, etc. Metric pitches are expressed in sixteenths of an inch; thus a metric #8 chain (08B-1) would be equivalent to an ANSI #40. Most roller chain is made from plain carbon or alloy steel, but stainless steel is used in food processing machinery or other places where lubrication is a problem, and nylon or brass are occasionally seen for the same reason.

Roller chain is ordinarily hooked up using a master link (also known as a connecting link), which typically has 1 pin held by a horseshoe clip rather than friction fit, allowing it to be inserted or removed with simple tools. Chain with a removable link or pin is also known as cottered chain, which allows the length of the chain to be adjusted. Half links (also known as offsets) are available and are used to increase the length of the chain by a single roller. Riveted roller chain has the master link (also known as a connecting link) “riveted” or mashed on the ends. These pins are made to be durable and are not removable.

USE

An example of 2 ‘ghost’ sprockets tensioning a triplex roller chain system
Roller chains are used in low- to mid-speed drives at around 600 to 800 feet per minute; however, at higher speeds, around 2,000 to 3,000 feet per minute, V-belts are normally used due to wear and noise issues.
A bicycle chain is a form of roller chain. Bicycle chains may have a master link, or may require a chain tool for removal and installation. A similar but larger and thus stronger chain is used on most motorcycles although it is sometimes replaced by either a toothed belt or a shaft drive, which offer lower noise level and fewer maintenance requirements.
The great majority of automobile engines use roller chains to drive the camshaft(s). Very high performance engines often use gear drive, and starting in the early 1960s toothed belts were used by some manufacturers.
Chains are also used in forklifts using hydraulic rams as a pulley to raise and lower the carriage; however, these chains are not considered roller chains, but are classified as lift or leaf chains.
Chainsaw cutting chains superficially resemble roller chains but are more closely related to leaf chains. They are driven by projecting drive links which also serve to locate the chain CZPT the bar.

Sea Harrier FA.2 ZA195 front (cold) vector thrust nozzle – the nozzle is rotated by a chain drive from an air motor
A perhaps unusual use of a pair of motorcycle chains is in the Harrier Jump Jet, where a chain drive from an air motor is used to rotate the movable engine nozzles, allowing them to be pointed downwards for hovering flight, or to the rear for normal CZPT flight, a system known as Thrust vectoring.

WEAR

 

The effect of wear on a roller chain is to increase the pitch (spacing of the links), causing the chain to grow longer. Note that this is due to wear at the pivoting pins and bushes, not from actual stretching of the metal (as does happen to some flexible steel components such as the hand-brake cable of a motor vehicle).

With modern chains it is unusual for a chain (other than that of a bicycle) to wear until it breaks, since a worn chain leads to the rapid onset of wear on the teeth of the sprockets, with ultimate failure being the loss of all the teeth on the sprocket. The sprockets (in particular the smaller of the two) suffer a grinding motion that puts a characteristic hook shape into the driven face of the teeth. (This effect is made worse by a chain improperly tensioned, but is unavoidable no matter what care is taken). The worn teeth (and chain) no longer provides smooth transmission of power and this may become evident from the noise, the vibration or (in car engines using a timing chain) the variation in ignition timing seen with a timing light. Both sprockets and chain should be replaced in these cases, since a new chain on worn sprockets will not last long. However, in less severe cases it may be possible to save the larger of the 2 sprockets, since it is always the smaller 1 that suffers the most wear. Only in very light-weight applications such as a bicycle, or in extreme cases of improper tension, will the chain normally jump off the sprockets.

The lengthening due to wear of a chain is calculated by the following formula:

M = the length of a number of links measured

S = the number of links measured

P = Pitch

In industry, it is usual to monitor the movement of the chain tensioner (whether manual or automatic) or the exact length of a drive chain (one rule of thumb is to replace a roller chain which has elongated 3% on an adjustable drive or 1.5% on a fixed-center drive). A simpler method, particularly suitable for the cycle or motorcycle user, is to attempt to pull the chain away from the larger of the 2 sprockets, whilst ensuring the chain is taut. Any significant movement (e.g. making it possible to see through a gap) probably indicates a chain worn up to and beyond the limit. Sprocket damage will result if the problem is ignored. Sprocket wear cancels this effect, and may mask chain wear.

CHAIN STRENGTH

The most common measure of roller chain’s strength is tensile strength. Tensile strength represents how much load a chain can withstand under a one-time load before breaking. Just as important as tensile strength is a chain’s fatigue strength. The critical factors in a chain’s fatigue strength is the quality of steel used to manufacture the chain, the heat treatment of the chain components, the quality of the pitch hole fabrication of the linkplates, and the type of shot plus the intensity of shot peen coverage on the linkplates. Other factors can include the thickness of the linkplates and the design (contour) of the linkplates. The rule of thumb for roller chain operating on a continuous drive is for the chain load to not exceed a mere 1/6 or 1/9 of the chain’s tensile strength, depending on the type of master links used (press-fit vs. slip-fit)[citation needed]. Roller chains operating on a continuous drive beyond these thresholds can and typically do fail prematurely via linkplate fatigue failure.

The standard minimum ultimate strength of the ANSI 29.1 steel chain is 12,500 x (pitch, in inches)2. X-ring and O-Ring chains greatly decrease wear by means of internal lubricants, increasing chain life. The internal lubrication is inserted by means of a vacuum when riveting the chain together.

CHAIN STHangZhouRDS

Standards organizations (such as ANSI and ISO) maintain standards for design, dimensions, and interchangeability of transmission chains. For example, the following Table shows data from ANSI standard B29.1-2011 (Precision Power Transmission Roller Chains, Attachments, and Sprockets) developed by the American Society of Mechanical Engineers (ASME). See the references[8][9][10] for additional information.

ASME/ANSI B29.1-2011 Roller Chain Standard SizesSizePitchMaximum Roller DiameterMinimum Ultimate Tensile StrengthMeasuring Load25

ASME/ANSI B29.1-2011 Roller Chain Standard Sizes
Size Pitch Maximum Roller Diameter Minimum Ultimate Tensile Strength Measuring Load
25 0.250 in (6.35 mm) 0.130 in (3.30 mm) 780 lb (350 kg) 18 lb (8.2 kg)
35 0.375 in (9.53 mm) 0.200 in (5.08 mm) 1,760 lb (800 kg) 18 lb (8.2 kg)
41 0.500 in (12.70 mm) 0.306 in (7.77 mm) 1,500 lb (680 kg) 18 lb (8.2 kg)
40 0.500 in (12.70 mm) 0.312 in (7.92 mm) 3,125 lb (1,417 kg) 31 lb (14 kg)
50 0.625 in (15.88 mm) 0.400 in (10.16 mm) 4,880 lb (2,210 kg) 49 lb (22 kg)
60 0.750 in (19.05 mm) 0.469 in (11.91 mm) 7,030 lb (3,190 kg) 70 lb (32 kg)
80 1.000 in (25.40 mm) 0.625 in (15.88 mm) 12,500 lb (5,700 kg) 125 lb (57 kg)
100 1.250 in (31.75 mm) 0.750 in (19.05 mm) 19,531 lb (8,859 kg) 195 lb (88 kg)
120 1.500 in (38.10 mm) 0.875 in (22.23 mm) 28,125 lb (12,757 kg) 281 lb (127 kg)
140 1.750 in (44.45 mm) 1.000 in (25.40 mm) 38,280 lb (17,360 kg) 383 lb (174 kg)
160 2.000 in (50.80 mm) 1.125 in (28.58 mm) 50,000 lb (23,000 kg) 500 lb (230 kg)
180 2.250 in (57.15 mm) 1.460 in (37.08 mm) 63,280 lb (28,700 kg) 633 lb (287 kg)
200 2.500 in (63.50 mm) 1.562 in (39.67 mm) 78,175 lb (35,460 kg) 781 lb (354 kg)
240 3.000 in (76.20 mm) 1.875 in (47.63 mm) 112,500 lb (51,000 kg) 1,000 lb (450 kg

For mnemonic purposes, below is another presentation of key dimensions from the same standard, expressed in fractions of an inch (which was part of the thinking behind the choice of preferred numbers in the ANSI standard):

Pitch (inches) Pitch expressed
in eighths
ANSI standard
chain number
Width (inches)
14 28 25 18
38 38 35 316
12 48 41 14
12 48 40 516
58 58 50 38
34 68 60 12
1 88 80 58

Notes:
1. The pitch is the distance between roller centers. The width is the distance between the link plates (i.e. slightly more than the roller width to allow for clearance).
2. The right-hand digit of the standard denotes 0 = normal chain, 1 = lightweight chain, 5 = rollerless bushing chain.
3. The left-hand digit denotes the number of eighths of an inch that make up the pitch.
4. An “H” following the standard number denotes heavyweight chain. A hyphenated number following the standard number denotes double-strand (2), triple-strand (3), and so on. Thus 60H-3 denotes number 60 heavyweight triple-strand chain.
 A typical bicycle chain (for derailleur gears) uses narrow 1⁄2-inch-pitch chain. The width of the chain is variable, and does not affect the load capacity. The more sprockets at the rear wheel (historically 3-6, nowadays 7-12 sprockets), the narrower the chain. Chains are sold according to the number of speeds they are designed to work with, for example, “10 speed chain”. Hub gear or single speed bicycles use 1/2″ x 1/8″ chains, where 1/8″ refers to the maximum thickness of a sprocket that can be used with the chain.

Typically chains with parallel shaped links have an even number of links, with each narrow link followed by a broad one. Chains built up with a uniform type of link, narrow at 1 and broad at the other end, can be made with an odd number of links, which can be an advantage to adapt to a special chainwheel-distance; on the other side such a chain tends to be not so strong.

Roller chains made using ISO standard are sometimes called as isochains.

 

WHY CHOOSE US 

1. Reliable Quality Assurance System
2. Cutting-Edge Computer-Controlled CNC Machines
3. Bespoke Solutions from Highly Experienced Specialists
4. Customization and OEM Available for Specific Application
5. Extensive Inventory of Spare Parts and Accessories
6. Well-Developed CZPT Marketing Network
7. Efficient After-Sale Service System

 

The 219 sets of advanced automatic production equipment provide guarantees for high product quality. The 167 engineers and technicians with senior professional titles can design and develop products to meet the exact demands of customers, and OEM customizations are also available with us. Our sound global service network can provide customers with timely after-sales technical services.

We are not just a manufacturer and supplier, but also an industry consultant. We work pro-actively with you to offer expert advice and product recommendations in order to end up with a most cost effective product available for your specific application. The clients we serve CZPT range from end users to distributors and OEMs. Our OEM replacements can be substituted wherever necessary and suitable for both repair and new assemblies.

 

Standard or Nonstandard: Standard
Application: Textile Machinery, Garment Machinery, Conveyer Equipment, Packaging Machinery, Electric Cars, Motorcycle, Food Machinery, Marine, Mining Equipment, Agricultural Machinery, Car, Food and Beverage Industry, Motorcycle Parts
Surface Treatment: Polishing
Structure: Roller Chain
Material: Alloy
Type: Short Pitch Chain
Samples:
US$ 0/Meter
1 Meter(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

bush chain

What are the safety precautions when working with bush chains?

Working with bush chains requires adherence to certain safety precautions to ensure the well-being of operators and prevent accidents. Here are some important safety measures to consider:

1. Personal protective equipment (PPE): Operators should wear appropriate PPE, including safety glasses, gloves, and protective clothing, to protect themselves from potential hazards such as flying debris, pinching, or entanglement.

2. Training and knowledge: Operators should be properly trained in the operation and maintenance of bush chains. They should have a thorough understanding of the equipment, including its components, functions, and potential hazards. Training should cover safe operating procedures, including start-up, shutdown, and emergency procedures.

3. Lockout/tagout procedures: Before performing any maintenance or repair work on a bush chain, proper lockout/tagout procedures should be followed. This involves isolating the power source, de-energizing the equipment, and securing it with lockout devices or tags to prevent accidental startup.

4. Regular inspections: Regular inspections should be conducted to identify any signs of wear, damage, or misalignment in the bush chain. This includes checking for loose bolts, worn sprockets, damaged links, or any other issues that could compromise the chain’s integrity. Any identified problems should be promptly addressed to prevent further damage or accidents.

5. Proper lifting and handling: When handling bush chains, proper lifting techniques should be employed to prevent strain or injury. Chains should be lifted using appropriate lifting equipment, and operators should avoid placing themselves in a position where they could be caught between moving parts.

6. Clean and well-maintained work environment: The work area should be clean, well-lit, and free from clutter or obstructions. This ensures that operators have clear visibility and can safely access the bush chain without tripping or other hazards.

7. Follow manufacturer guidelines: It is important to follow the manufacturer’s guidelines and recommendations for the safe use, maintenance, and inspection of the specific bush chain being used. This includes following recommended lubrication practices, tensioning guidelines, and any other instructions provided by the manufacturer.

By adhering to these safety precautions, operators can mitigate potential risks associated with working with bush chains and ensure a safe working environment for themselves and others involved in the operation and maintenance of the equipment.

bush chain

What are the design considerations for a bush chain system?

When designing a bush chain system, several key considerations should be taken into account to ensure its reliable and efficient operation. These design considerations include:

1. Load capacity: Evaluate the expected loads that the bush chain system will need to handle. Consider the weight, size, and type of materials or products being conveyed or transmitted. Select a bush chain with a suitable load capacity to ensure it can withstand the required loads.

2. Speed and acceleration: Determine the desired operating speed and acceleration of the bush chain system. This will influence the selection of chain pitch, material, and lubrication requirements. Higher speeds may require additional considerations such as reduced friction or increased precision.

3. Environmental conditions: Evaluate the operating environment for the bush chain system. Consider factors such as temperature, humidity, dust, chemicals, and presence of corrosive or abrasive substances. Select a bush chain material and coating that can withstand the environmental conditions and resist corrosion or wear.

4. Space limitations: Assess the available space for the installation of the bush chain system. Consider the dimensions and layout of the equipment, conveyor, or transmission system. Ensure that there is sufficient clearance for the chain’s movement and that the system can be properly tensioned and aligned.

5. Alignment and tensioning: Proper tensioning and alignment are critical for the smooth operation of a bush chain system. Design the system to include tensioners, idler sprockets, or adjustable mounting options to facilitate easy tensioning and alignment adjustments.

6. Lubrication and maintenance: Determine the lubrication requirements of the bush chain system. Consider the frequency and method of lubrication, as well as any accessibility constraints for maintenance. Select a lubrication method that suits the application, such as manual lubrication, automatic lubrication systems, or self-lubricating bush chains.

7. Safety considerations: Ensure that the bush chain system is designed with appropriate safety measures. Incorporate guards, covers, or enclosures where necessary to prevent accidental contact with moving parts. Consider emergency stop systems and safety interlocks for the protection of personnel and equipment.

By carefully considering these design factors, a bush chain system can be optimized for performance, reliability, and longevity in a specific application or industry.

bush chain

Can a bush chain be used in high-load applications?

Yes, bush chains are commonly used in high-load applications due to their robust design and ability to handle heavy loads. The construction of a bush chain allows it to transmit significant amounts of force and torque, making it suitable for demanding industrial applications.

Bush chains are designed with solid bushings and precision rollers that provide excellent load-carrying capacity. The bushings act as a bearing surface between the pins and the rollers, reducing friction and allowing for smooth rotation under high loads.

Furthermore, bush chains are available in various sizes and configurations to accommodate different load requirements. They are made from durable materials such as alloy steel or stainless steel, which further enhances their strength and load-bearing capabilities.

When selecting a bush chain for a high-load application, it is important to consider factors such as the anticipated load magnitude, operating conditions, and the desired safety margin. Proper lubrication and regular maintenance are also essential to ensure optimal performance and extend the service life of the bush chain in high-load applications.

Overall, bush chains are a reliable choice for transmitting high loads and are widely used in industries such as mining, construction, heavy machinery, and material handling.

China Custom Transmission Chain 20A-6 a Series Short Pitch Precision Multiple Strand Roller Chains and Bush Chains with Motorcycle/Bicycle Parts  China Custom Transmission Chain 20A-6 a Series Short Pitch Precision Multiple Strand Roller Chains and Bush Chains with Motorcycle/Bicycle Parts
editor by CX 2023-09-13

China factory Motorcycle Roller Chain 200-2 a Series Short Pitch Precision Duplex Alloy Steel Roller Chains and Bush Chains with Spare Parts

Product Description

A Series Short Pitch Precision Duplex Roller Chains & Bush Chains

ISO/ANSI/ DIN
Chain No.
Chain No. Pitch

P
mm

Roller diameter

d1max
mm

Width between inner plates
b1min
mm
Pin diameter

d2max
mm

Pin length Inner plate depth
h2max
mm
Plate thickness

Tmax
mm

Transverse                     Pt 
mm
Tensile strength

Qmin
kN/lbf

Average tensile strength
Q0
kN
Weight per meter
q  
kg/m
Lmax
mm
Lcmax
mm
200-2 40A-2 63.500 39.68 37.85 19.85 151.9 158.8 60.00 8.00 71.55 707.60/16 571 933.6 32.24

ROLLER CHAIN

Roller chain or bush roller chain is the type of chain drive most commonly used for transmission of mechanical power on many kinds of domestic, industrial and agricultural machinery, including conveyors, wire- and tube-drawing machines, printing presses, cars, motorcycles, and bicycles. It consists of a series of short cylindrical rollers held together by side links. It is driven by a toothed wheel called a sprocket. It is a simple, reliable, and efficient means of power transmission.

CONSTRUCTION OF THE CHAIN

Two different sizes of roller chain, showing construction.
There are 2 types of links alternating in the bush roller chain. The first type is inner links, having 2 inner plates held together by 2 sleeves or bushings CZPT which rotate 2 rollers. Inner links alternate with the second type, the outer links, consisting of 2 outer plates held together by pins passing through the bushings of the inner links. The “bushingless” roller chain is similar in operation though not in construction; instead of separate bushings or sleeves holding the inner plates together, the plate has a tube stamped into it protruding from the hole which serves the same purpose. This has the advantage of removing 1 step in assembly of the chain.

The roller chain design reduces friction compared to simpler designs, resulting in higher efficiency and less wear. The original power transmission chain varieties lacked rollers and bushings, with both the inner and outer plates held by pins which directly contacted the sprocket teeth; however this configuration exhibited extremely rapid wear of both the sprocket teeth, and the plates where they pivoted on the pins. This problem was partially solved by the development of bushed chains, with the pins holding the outer plates passing through bushings or sleeves connecting the inner plates. This distributed the wear over a greater area; however the teeth of the sprockets still wore more rapidly than is desirable, from the sliding friction against the bushings. The addition of rollers surrounding the bushing sleeves of the chain and provided rolling contact with the teeth of the sprockets resulting in excellent resistance to wear of both sprockets and chain as well. There is even very low friction, as long as the chain is sufficiently lubricated. Continuous, clean, lubrication of roller chains is of primary importance for efficient operation as well as correct tensioning.

LUBRICATION

Many driving chains (for example, in factory equipment, or driving a camshaft inside an internal combustion engine) operate in clean environments, and thus the wearing surfaces (that is, the pins and bushings) are safe from precipitation and airborne grit, many even in a sealed environment such as an oil bath. Some roller chains are designed to have o-rings built into the space between the outside link plate and the inside roller link plates. Chain manufacturers began to include this feature in 1971 after the application was invented by Joseph Montano while working for Whitney Chain of Hartford, Connecticut. O-rings were included as a way to improve lubrication to the links of power transmission chains, a service that is vitally important to extending their working life. These rubber fixtures form a barrier that holds factory applied lubricating grease inside the pin and bushing wear areas. Further, the rubber o-rings prevent dirt and other contaminants from entering inside the chain linkages, where such particles would otherwise cause significant wear.[citation needed]

There are also many chains that have to operate in dirty conditions, and for size or operational reasons cannot be sealed. Examples include chains on farm equipment, bicycles, and chain saws. These chains will necessarily have relatively high rates of wear, particularly when the operators are prepared to accept more friction, less efficiency, more noise and more frequent replacement as they neglect lubrication and adjustment.

Many oil-based lubricants attract dirt and other particles, eventually forming an CZPT paste that will compound wear on chains. This problem can be circumvented by use of a “dry” PTFE spray, which forms a solid film after application and repels both particles and moisture.

VARIANTS DESIGN

Layout of a roller chain: 1. Outer plate, 2. Inner plate, 3. Pin, 4. Bushing, 5. Roller
If the chain is not being used for a high wear application (for instance if it is just transmitting motion from a hand-operated lever to a control shaft on a machine, or a sliding door on an oven), then 1 of the simpler types of chain may still be used. Conversely, where extra strength but the smooth drive of a smaller pitch is required, the chain may be “siamesed”; instead of just 2 rows of plates on the outer sides of the chain, there may be 3 (“duplex”), 4 (“triplex”), or more rows of plates running parallel, with bushings and rollers between each adjacent pair, and the same number of rows of teeth running in parallel on the sprockets to match. Timing chains on automotive engines, for example, typically have multiple rows of plates called strands.

Roller chain is made in several sizes, the most common American National Standards Institute (ANSI) standards being 40, 50, 60, and 80. The first digit(s) indicate the pitch of the chain in eighths of an inch, with the last digit being 0 for standard chain, 1 for lightweight chain, and 5 for bushed chain with no rollers. Thus, a chain with half-inch pitch would be a #40 while a #160 sprocket would have teeth spaced 2 inches apart, etc. Metric pitches are expressed in sixteenths of an inch; thus a metric #8 chain (08B-1) would be equivalent to an ANSI #40. Most roller chain is made from plain carbon or alloy steel, but stainless steel is used in food processing machinery or other places where lubrication is a problem, and nylon or brass are occasionally seen for the same reason.

Roller chain is ordinarily hooked up using a master link (also known as a connecting link), which typically has 1 pin held by a horseshoe clip rather than friction fit, allowing it to be inserted or removed with simple tools. Chain with a removable link or pin is also known as cottered chain, which allows the length of the chain to be adjusted. Half links (also known as offsets) are available and are used to increase the length of the chain by a single roller. Riveted roller chain has the master link (also known as a connecting link) “riveted” or mashed on the ends. These pins are made to be durable and are not removable.

USE

An example of 2 ‘ghost’ sprockets tensioning a triplex roller chain system
Roller chains are used in low- to mid-speed drives at around 600 to 800 feet per minute; however, at higher speeds, around 2,000 to 3,000 feet per minute, V-belts are normally used due to wear and noise issues.
A bicycle chain is a form of roller chain. Bicycle chains may have a master link, or may require a chain tool for removal and installation. A similar but larger and thus stronger chain is used on most motorcycles although it is sometimes replaced by either a toothed belt or a shaft drive, which offer lower noise level and fewer maintenance requirements.
The great majority of automobile engines use roller chains to drive the camshaft(s). Very high performance engines often use gear drive, and starting in the early 1960s toothed belts were used by some manufacturers.
Chains are also used in forklifts using hydraulic rams as a pulley to raise and lower the carriage; however, these chains are not considered roller chains, but are classified as lift or leaf chains.
Chainsaw cutting chains superficially resemble roller chains but are more closely related to leaf chains. They are driven by projecting drive links which also serve to locate the chain CZPT the bar.

Sea Harrier FA.2 ZA195 front (cold) vector thrust nozzle – the nozzle is rotated by a chain drive from an air motor
A perhaps unusual use of a pair of motorcycle chains is in the Harrier Jump Jet, where a chain drive from an air motor is used to rotate the movable engine nozzles, allowing them to be pointed downwards for hovering flight, or to the rear for normal CZPT flight, a system known as Thrust vectoring.

WEAR

 

The effect of wear on a roller chain is to increase the pitch (spacing of the links), causing the chain to grow longer. Note that this is due to wear at the pivoting pins and bushes, not from actual stretching of the metal (as does happen to some flexible steel components such as the hand-brake cable of a motor vehicle).

With modern chains it is unusual for a chain (other than that of a bicycle) to wear until it breaks, since a worn chain leads to the rapid onset of wear on the teeth of the sprockets, with ultimate failure being the loss of all the teeth on the sprocket. The sprockets (in particular the smaller of the two) suffer a grinding motion that puts a characteristic hook shape into the driven face of the teeth. (This effect is made worse by a chain improperly tensioned, but is unavoidable no matter what care is taken). The worn teeth (and chain) no longer provides smooth transmission of power and this may become evident from the noise, the vibration or (in car engines using a timing chain) the variation in ignition timing seen with a timing light. Both sprockets and chain should be replaced in these cases, since a new chain on worn sprockets will not last long. However, in less severe cases it may be possible to save the larger of the 2 sprockets, since it is always the smaller 1 that suffers the most wear. Only in very light-weight applications such as a bicycle, or in extreme cases of improper tension, will the chain normally jump off the sprockets.

The lengthening due to wear of a chain is calculated by the following formula:

M = the length of a number of links measured

S = the number of links measured

P = Pitch

In industry, it is usual to monitor the movement of the chain tensioner (whether manual or automatic) or the exact length of a drive chain (one rule of thumb is to replace a roller chain which has elongated 3% on an adjustable drive or 1.5% on a fixed-center drive). A simpler method, particularly suitable for the cycle or motorcycle user, is to attempt to pull the chain away from the larger of the 2 sprockets, whilst ensuring the chain is taut. Any significant movement (e.g. making it possible to see through a gap) probably indicates a chain worn up to and beyond the limit. Sprocket damage will result if the problem is ignored. Sprocket wear cancels this effect, and may mask chain wear.

CHAIN STRENGTH

The most common measure of roller chain’s strength is tensile strength. Tensile strength represents how much load a chain can withstand under a one-time load before breaking. Just as important as tensile strength is a chain’s fatigue strength. The critical factors in a chain’s fatigue strength is the quality of steel used to manufacture the chain, the heat treatment of the chain components, the quality of the pitch hole fabrication of the linkplates, and the type of shot plus the intensity of shot peen coverage on the linkplates. Other factors can include the thickness of the linkplates and the design (contour) of the linkplates. The rule of thumb for roller chain operating on a continuous drive is for the chain load to not exceed a mere 1/6 or 1/9 of the chain’s tensile strength, depending on the type of master links used (press-fit vs. slip-fit)[citation needed]. Roller chains operating on a continuous drive beyond these thresholds can and typically do fail prematurely via linkplate fatigue failure.

The standard minimum ultimate strength of the ANSI 29.1 steel chain is 12,500 x (pitch, in inches)2. X-ring and O-Ring chains greatly decrease wear by means of internal lubricants, increasing chain life. The internal lubrication is inserted by means of a vacuum when riveting the chain together.

CHAIN STHangZhouRDS

Standards organizations (such as ANSI and ISO) maintain standards for design, dimensions, and interchangeability of transmission chains. For example, the following Table shows data from ANSI standard B29.1-2011 (Precision Power Transmission Roller Chains, Attachments, and Sprockets) developed by the American Society of Mechanical Engineers (ASME). See the references[8][9][10] for additional information.

ASME/ANSI B29.1-2011 Roller Chain Standard SizesSizePitchMaximum Roller DiameterMinimum Ultimate Tensile StrengthMeasuring Load25

ASME/ANSI B29.1-2011 Roller Chain Standard Sizes
Size Pitch Maximum Roller Diameter Minimum Ultimate Tensile Strength Measuring Load
25 0.250 in (6.35 mm) 0.130 in (3.30 mm) 780 lb (350 kg) 18 lb (8.2 kg)
35 0.375 in (9.53 mm) 0.200 in (5.08 mm) 1,760 lb (800 kg) 18 lb (8.2 kg)
41 0.500 in (12.70 mm) 0.306 in (7.77 mm) 1,500 lb (680 kg) 18 lb (8.2 kg)
40 0.500 in (12.70 mm) 0.312 in (7.92 mm) 3,125 lb (1,417 kg) 31 lb (14 kg)
50 0.625 in (15.88 mm) 0.400 in (10.16 mm) 4,880 lb (2,210 kg) 49 lb (22 kg)
60 0.750 in (19.05 mm) 0.469 in (11.91 mm) 7,030 lb (3,190 kg) 70 lb (32 kg)
80 1.000 in (25.40 mm) 0.625 in (15.88 mm) 12,500 lb (5,700 kg) 125 lb (57 kg)
100 1.250 in (31.75 mm) 0.750 in (19.05 mm) 19,531 lb (8,859 kg) 195 lb (88 kg)
120 1.500 in (38.10 mm) 0.875 in (22.23 mm) 28,125 lb (12,757 kg) 281 lb (127 kg)
140 1.750 in (44.45 mm) 1.000 in (25.40 mm) 38,280 lb (17,360 kg) 383 lb (174 kg)
160 2.000 in (50.80 mm) 1.125 in (28.58 mm) 50,000 lb (23,000 kg) 500 lb (230 kg)
180 2.250 in (57.15 mm) 1.460 in (37.08 mm) 63,280 lb (28,700 kg) 633 lb (287 kg)
200 2.500 in (63.50 mm) 1.562 in (39.67 mm) 78,175 lb (35,460 kg) 781 lb (354 kg)
240 3.000 in (76.20 mm) 1.875 in (47.63 mm) 112,500 lb (51,000 kg) 1,000 lb (450 kg

For mnemonic purposes, below is another presentation of key dimensions from the same standard, expressed in fractions of an inch (which was part of the thinking behind the choice of preferred numbers in the ANSI standard):

Pitch (inches) Pitch expressed
in eighths
ANSI standard
chain number
Width (inches)
14 28 25 18
38 38 35 316
12 48 41 14
12 48 40 516
58 58 50 38
34 68 60 12
1 88 80 58

Notes:
1. The pitch is the distance between roller centers. The width is the distance between the link plates (i.e. slightly more than the roller width to allow for clearance).
2. The right-hand digit of the standard denotes 0 = normal chain, 1 = lightweight chain, 5 = rollerless bushing chain.
3. The left-hand digit denotes the number of eighths of an inch that make up the pitch.
4. An “H” following the standard number denotes heavyweight chain. A hyphenated number following the standard number denotes double-strand (2), triple-strand (3), and so on. Thus 60H-3 denotes number 60 heavyweight triple-strand chain.
 A typical bicycle chain (for derailleur gears) uses narrow 1⁄2-inch-pitch chain. The width of the chain is variable, and does not affect the load capacity. The more sprockets at the rear wheel (historically 3-6, nowadays 7-12 sprockets), the narrower the chain. Chains are sold according to the number of speeds they are designed to work with, for example, “10 speed chain”. Hub gear or single speed bicycles use 1/2″ x 1/8″ chains, where 1/8″ refers to the maximum thickness of a sprocket that can be used with the chain.

Typically chains with parallel shaped links have an even number of links, with each narrow link followed by a broad one. Chains built up with a uniform type of link, narrow at 1 and broad at the other end, can be made with an odd number of links, which can be an advantage to adapt to a special chainwheel-distance; on the other side such a chain tends to be not so strong.

Roller chains made using ISO standard are sometimes called as isochains.

 

WHY CHOOSE US 

1. Reliable Quality Assurance System
2. Cutting-Edge Computer-Controlled CNC Machines
3. Bespoke Solutions from Highly Experienced Specialists
4. Customization and OEM Available for Specific Application
5. Extensive Inventory of Spare Parts and Accessories
6. Well-Developed CZPT Marketing Network
7. Efficient After-Sale Service System

 

The 219 sets of advanced automatic production equipment provide guarantees for high product quality. The 167 engineers and technicians with senior professional titles can design and develop products to meet the exact demands of customers, and OEM customizations are also available with us. Our sound global service network can provide customers with timely after-sales technical services.

We are not just a manufacturer and supplier, but also an industry consultant. We work pro-actively with you to offer expert advice and product recommendations in order to end up with a most cost effective product available for your specific application. The clients we serve CZPT range from end users to distributors and OEMs. Our OEM replacements can be substituted wherever necessary and suitable for both repair and new assemblies.

 

Standard or Nonstandard: Standard
Application: Textile Machinery, Garment Machinery, Conveyer Equipment, Packaging Machinery, Electric Cars, Motorcycle, Food Machinery, Mining Equipment, Agricultural Machinery, Car, Textile Machinery, Garment Machinery, Conveyor
Surface Treatment: Polishing
Structure: Roller Chain
Material: Alloy
Type: Derrick, Bush Chain
Samples:
US$ 0/Meter
1 Meter(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

bush chain

How does a bush chain handle reverse rotations and backdrives?

A bush chain is designed to handle reverse rotations and backdrives effectively. Here’s how it works:

1. Non-Slip Design: Bush chains are typically constructed with interlocking link plates and precision-fitted bushings. This design ensures that the chain maintains a positive engagement with the sprockets, preventing slippage or disengagement during reverse rotations or backdrives.

2. Tooth Profile: The sprockets used with bush chains are designed with a specific tooth profile that helps in maintaining proper chain engagement even during reverse rotations. The tooth shape ensures a smooth transition of the chain from one tooth to another, minimizing the risk of skipping or jumping off the sprocket.

3. Backstop Mechanisms: In some applications where backdrives or reverse rotations are more common, additional backstop mechanisms may be employed. These mechanisms prevent the chain from moving in the undesired direction by utilizing devices such as one-way clutches or backstop sprockets.

4. Proper Chain Tension: Maintaining proper chain tension is crucial for reliable operation in reverse rotations and backdrives. Adequate tension ensures that the chain remains engaged with the sprockets and minimizes the possibility of slippage.

Overall, bush chains are designed to handle reverse rotations and backdrives without compromising their performance and reliability. However, it is important to consider the specific application requirements and consult with chain manufacturers or experts to ensure the selection of the appropriate bush chain design and components for the desired operating conditions.

bush chain

Can a bush chain be used in vertical lifting applications?

Yes, bush chains can be used in vertical lifting applications. The design and construction of bush chains make them suitable for transmitting power and lifting heavy loads in a vertical direction. Bush chains are commonly used in various vertical lifting systems such as elevators, cranes, hoists, and material handling equipment.

When utilizing a bush chain for vertical lifting, several factors should be considered:

1. Load capacity: Determine the maximum load that the bush chain needs to support during the lifting operation. Select a bush chain with an appropriate load capacity to ensure it can handle the weight of the load.

2. Safety factors: Consider the safety requirements and regulations for vertical lifting applications. Ensure that the selected bush chain meets the necessary safety standards and has a sufficient factor of safety to handle the intended load.

3. Speed and acceleration: Evaluate the desired lifting speed and acceleration. Take into account the weight of the load, the distance to be lifted, and the required lifting time. Ensure that the bush chain is capable of safely lifting the load at the desired speed and acceleration.

4. Tensioning and alignment: Proper tensioning and alignment are crucial for the smooth and reliable operation of a bush chain in vertical lifting applications. Ensure that the bush chain is properly tensioned and aligned to prevent issues such as chain slack, skipping, or jamming.

5. Lubrication: Provide adequate lubrication to reduce friction and wear between the bush chain components. Lubrication helps to prolong the life of the chain and ensures smooth movement during the lifting operation. Select the appropriate lubrication method based on the application requirements and operating conditions.

It is important to consult the manufacturer’s guidelines and specifications when selecting and installing a bush chain for vertical lifting applications. Proper maintenance and regular inspections should also be conducted to ensure the safe and reliable operation of the bush chain in the vertical lifting system.

bush chain

What are the applications of bush chains in industrial settings?

Bush chains, also known as bush roller chains or bushing chains, have a wide range of applications in various industrial settings. Their versatility and durability make them suitable for demanding environments and heavy-duty applications. Here are some common industrial applications of bush chains:

1. Industrial Machinery: Bush chains are used in a wide range of industrial machinery, including conveyors, material handling equipment, packaging machines, printing presses, and textile machinery. They provide reliable power transmission and can handle high loads and continuous operation.

2. Agricultural Equipment: Bush chains are extensively used in agricultural machinery such as tractors, combines, harvesters, and irrigation systems. They facilitate the transfer of power from the engine to various agricultural implements and enable efficient operation in tough farming conditions.

3. Automotive Systems: Bush chains find applications in automotive systems such as timing drives, camshaft drives, and engine oil pumps. They ensure precise synchronization of engine components and reliable power transmission for efficient and smooth operation.

4. Material Handling: Bush chains are commonly used in material handling equipment like forklifts, hoists, and cranes. They enable the lifting and movement of heavy loads and ensure reliable power transmission in demanding industrial environments.

5. Mining and Construction: In the mining and construction industries, bush chains are employed in equipment such as excavators, bulldozers, crushers, and conveyor systems. They can withstand harsh conditions, high loads, and abrasive materials commonly encountered in these industries.

6. Power Transmission: Bush chains are utilized in power transmission systems where torque and speed need to be transferred from one component to another. They are commonly found in power plants, pulp and paper mills, steel mills, and other heavy industrial applications.

7. Food Processing: Bush chains designed for food-grade applications are used in the food processing industry. They comply with strict hygiene and sanitation standards and are resistant to corrosion, allowing for safe and efficient operation in food production lines.

Overall, bush chains play a vital role in numerous industrial applications, providing reliable and efficient power transmission, durability, and resistance to harsh operating conditions. Their adaptability and strength make them a preferred choice in various industrial sectors.

China factory Motorcycle Roller Chain 200-2 a Series Short Pitch Precision Duplex Alloy Steel Roller Chains and Bush Chains with Spare Parts  China factory Motorcycle Roller Chain 200-2 a Series Short Pitch Precision Duplex Alloy Steel Roller Chains and Bush Chains with Spare Parts
editor by CX 2023-09-08

China wholesaler Chain Industrial Manufacturer Motorcycle Chain 32B-2 B Series Carbon Steel Short Pitch Precision Duplex Conveyor Roller Chains and Bush Chains with Spare Parts

Product Description

B Series Short pitch Precision Duplex Roller Chains & Bush Chains

ISO/DIN
Chain No.
Pitch

P
mm

Roller diameter

d1max
mm

Width
between inner plates
b1min
mm
Pin diameter

d2 max
mm

Pin length Inner
plate depth
h2max
mm
Plate thickness

t/Tmax
mm

Transverse pitch

         Pt         mm

Tensile strength

Qmin
kN/lbf

Average
tensile strength

Q0
kN

Weight
per meter
q  kg/m
Lmax
mm
Lcmax
mm
32B-2 50.800 29.21 30.99 17.81 124.6 129.6 42.00 7.00/6.0 58.55 450.0/157173 508.5 21.00

*Straight side plates

ROLLER CHAIN

Roller chain or bush roller chain is the type of chain drive most commonly used for transmission of mechanical power on many kinds of domestic, industrial and agricultural machinery, including conveyors, wire- and tube-drawing machines, printing presses, cars, motorcycles, and bicycles. It consists of a series of short cylindrical rollers held together by side links. It is driven by a toothed wheel called a sprocket. It is a simple, reliable, and efficient means of power transmission.

CONSTRUCTION OF THE CHAIN

Two different sizes of roller chain, showing construction.
There are 2 types of links alternating in the bush roller chain. The first type is inner links, having 2 inner plates held together by 2 sleeves or bushings CZPT which rotate 2 rollers. Inner links alternate with the second type, the outer links, consisting of 2 outer plates held together by pins passing through the bushings of the inner links. The “bushingless” roller chain is similar in operation though not in construction; instead of separate bushings or sleeves holding the inner plates together, the plate has a tube stamped into it protruding from the hole which serves the same purpose. This has the advantage of removing 1 step in assembly of the chain.

The roller chain design reduces friction compared to simpler designs, resulting in higher efficiency and less wear. The original power transmission chain varieties lacked rollers and bushings, with both the inner and outer plates held by pins which directly contacted the sprocket teeth; however this configuration exhibited extremely rapid wear of both the sprocket teeth, and the plates where they pivoted on the pins. This problem was partially solved by the development of bushed chains, with the pins holding the outer plates passing through bushings or sleeves connecting the inner plates. This distributed the wear over a greater area; however the teeth of the sprockets still wore more rapidly than is desirable, from the sliding friction against the bushings. The addition of rollers surrounding the bushing sleeves of the chain and provided rolling contact with the teeth of the sprockets resulting in excellent resistance to wear of both sprockets and chain as well. There is even very low friction, as long as the chain is sufficiently lubricated. Continuous, clean, lubrication of roller chains is of primary importance for efficient operation as well as correct tensioning.

LUBRICATION

Many driving chains (for example, in factory equipment, or driving a camshaft inside an internal combustion engine) operate in clean environments, and thus the wearing surfaces (that is, the pins and bushings) are safe from precipitation and airborne grit, many even in a sealed environment such as an oil bath. Some roller chains are designed to have o-rings built into the space between the outside link plate and the inside roller link plates. Chain manufacturers began to include this feature in 1971 after the application was invented by Joseph Montano while working for Whitney Chain of Hartford, Connecticut. O-rings were included as a way to improve lubrication to the links of power transmission chains, a service that is vitally important to extending their working life. These rubber fixtures form a barrier that holds factory applied lubricating grease inside the pin and bushing wear areas. Further, the rubber o-rings prevent dirt and other contaminants from entering inside the chain linkages, where such particles would otherwise cause significant wear.[citation needed]

There are also many chains that have to operate in dirty conditions, and for size or operational reasons cannot be sealed. Examples include chains on farm equipment, bicycles, and chain saws. These chains will necessarily have relatively high rates of wear, particularly when the operators are prepared to accept more friction, less efficiency, more noise and more frequent replacement as they neglect lubrication and adjustment.

Many oil-based lubricants attract dirt and other particles, eventually forming an CZPT paste that will compound wear on chains. This problem can be circumvented by use of a “dry” PTFE spray, which forms a solid film after application and repels both particles and moisture.

VARIANTS DESIGN

Layout of a roller chain: 1. Outer plate, 2. Inner plate, 3. Pin, 4. Bushing, 5. Roller
If the chain is not being used for a high wear application (for instance if it is just transmitting motion from a hand-operated lever to a control shaft on a machine, or a sliding door on an oven), then 1 of the simpler types of chain may still be used. Conversely, where extra strength but the smooth drive of a smaller pitch is required, the chain may be “siamesed”; instead of just 2 rows of plates on the outer sides of the chain, there may be 3 (“duplex”), 4 (“triplex”), or more rows of plates running parallel, with bushings and rollers between each adjacent pair, and the same number of rows of teeth running in parallel on the sprockets to match. Timing chains on automotive engines, for example, typically have multiple rows of plates called strands.

Roller chain is made in several sizes, the most common American National Standards Institute (ANSI) standards being 40, 50, 60, and 80. The first digit(s) indicate the pitch of the chain in eighths of an inch, with the last digit being 0 for standard chain, 1 for lightweight chain, and 5 for bushed chain with no rollers. Thus, a chain with half-inch pitch would be a #40 while a #160 sprocket would have teeth spaced 2 inches apart, etc. Metric pitches are expressed in sixteenths of an inch; thus a metric #8 chain (08B-1) would be equivalent to an ANSI #40. Most roller chain is made from plain carbon or alloy steel, but stainless steel is used in food processing machinery or other places where lubrication is a problem, and nylon or brass are occasionally seen for the same reason.

Roller chain is ordinarily hooked up using a master link (also known as a connecting link), which typically has 1 pin held by a horseshoe clip rather than friction fit, allowing it to be inserted or removed with simple tools. Chain with a removable link or pin is also known as cottered chain, which allows the length of the chain to be adjusted. Half links (also known as offsets) are available and are used to increase the length of the chain by a single roller. Riveted roller chain has the master link (also known as a connecting link) “riveted” or mashed on the ends. These pins are made to be durable and are not removable.

USE

An example of 2 ‘ghost’ sprockets tensioning a triplex roller chain system
Roller chains are used in low- to mid-speed drives at around 600 to 800 feet per minute; however, at higher speeds, around 2,000 to 3,000 feet per minute, V-belts are normally used due to wear and noise issues.
A bicycle chain is a form of roller chain. Bicycle chains may have a master link, or may require a chain tool for removal and installation. A similar but larger and thus stronger chain is used on most motorcycles although it is sometimes replaced by either a toothed belt or a shaft drive, which offer lower noise level and fewer maintenance requirements.
The great majority of automobile engines use roller chains to drive the camshaft(s). Very high performance engines often use gear drive, and starting in the early 1960s toothed belts were used by some manufacturers.
Chains are also used in forklifts using hydraulic rams as a pulley to raise and lower the carriage; however, these chains are not considered roller chains, but are classified as lift or leaf chains.
Chainsaw cutting chains superficially resemble roller chains but are more closely related to leaf chains. They are driven by projecting drive links which also serve to locate the chain CZPT the bar.

Sea Harrier FA.2 ZA195 front (cold) vector thrust nozzle – the nozzle is rotated by a chain drive from an air motor
A perhaps unusual use of a pair of motorcycle chains is in the Harrier Jump Jet, where a chain drive from an air motor is used to rotate the movable engine nozzles, allowing them to be pointed downwards for hovering flight, or to the rear for normal CZPT flight, a system known as Thrust vectoring.

WEAR

 

The effect of wear on a roller chain is to increase the pitch (spacing of the links), causing the chain to grow longer. Note that this is due to wear at the pivoting pins and bushes, not from actual stretching of the metal (as does happen to some flexible steel components such as the hand-brake cable of a motor vehicle).

With modern chains it is unusual for a chain (other than that of a bicycle) to wear until it breaks, since a worn chain leads to the rapid onset of wear on the teeth of the sprockets, with ultimate failure being the loss of all the teeth on the sprocket. The sprockets (in particular the smaller of the two) suffer a grinding motion that puts a characteristic hook shape into the driven face of the teeth. (This effect is made worse by a chain improperly tensioned, but is unavoidable no matter what care is taken). The worn teeth (and chain) no longer provides smooth transmission of power and this may become evident from the noise, the vibration or (in car engines using a timing chain) the variation in ignition timing seen with a timing light. Both sprockets and chain should be replaced in these cases, since a new chain on worn sprockets will not last long. However, in less severe cases it may be possible to save the larger of the 2 sprockets, since it is always the smaller 1 that suffers the most wear. Only in very light-weight applications such as a bicycle, or in extreme cases of improper tension, will the chain normally jump off the sprockets.

The lengthening due to wear of a chain is calculated by the following formula:

M = the length of a number of links measured

S = the number of links measured

P = Pitch

In industry, it is usual to monitor the movement of the chain tensioner (whether manual or automatic) or the exact length of a drive chain (one rule of thumb is to replace a roller chain which has elongated 3% on an adjustable drive or 1.5% on a fixed-center drive). A simpler method, particularly suitable for the cycle or motorcycle user, is to attempt to pull the chain away from the larger of the 2 sprockets, whilst ensuring the chain is taut. Any significant movement (e.g. making it possible to see through a gap) probably indicates a chain worn up to and beyond the limit. Sprocket damage will result if the problem is ignored. Sprocket wear cancels this effect, and may mask chain wear.

CHAIN STRENGTH

The most common measure of roller chain’s strength is tensile strength. Tensile strength represents how much load a chain can withstand under a one-time load before breaking. Just as important as tensile strength is a chain’s fatigue strength. The critical factors in a chain’s fatigue strength is the quality of steel used to manufacture the chain, the heat treatment of the chain components, the quality of the pitch hole fabrication of the linkplates, and the type of shot plus the intensity of shot peen coverage on the linkplates. Other factors can include the thickness of the linkplates and the design (contour) of the linkplates. The rule of thumb for roller chain operating on a continuous drive is for the chain load to not exceed a mere 1/6 or 1/9 of the chain’s tensile strength, depending on the type of master links used (press-fit vs. slip-fit)[citation needed]. Roller chains operating on a continuous drive beyond these thresholds can and typically do fail prematurely via linkplate fatigue failure.

The standard minimum ultimate strength of the ANSI 29.1 steel chain is 12,500 x (pitch, in inches)2. X-ring and O-Ring chains greatly decrease wear by means of internal lubricants, increasing chain life. The internal lubrication is inserted by means of a vacuum when riveting the chain together.

CHAIN STHangZhouRDS

Standards organizations (such as ANSI and ISO) maintain standards for design, dimensions, and interchangeability of transmission chains. For example, the following Table shows data from ANSI standard B29.1-2011 (Precision Power Transmission Roller Chains, Attachments, and Sprockets) developed by the American Society of Mechanical Engineers (ASME). See the references[8][9][10] for additional information.

ASME/ANSI B29.1-2011 Roller Chain Standard SizesSizePitchMaximum Roller DiameterMinimum Ultimate Tensile StrengthMeasuring Load25

ASME/ANSI B29.1-2011 Roller Chain Standard Sizes
Size Pitch Maximum Roller Diameter Minimum Ultimate Tensile Strength Measuring Load
25 0.250 in (6.35 mm) 0.130 in (3.30 mm) 780 lb (350 kg) 18 lb (8.2 kg)
35 0.375 in (9.53 mm) 0.200 in (5.08 mm) 1,760 lb (800 kg) 18 lb (8.2 kg)
41 0.500 in (12.70 mm) 0.306 in (7.77 mm) 1,500 lb (680 kg) 18 lb (8.2 kg)
40 0.500 in (12.70 mm) 0.312 in (7.92 mm) 3,125 lb (1,417 kg) 31 lb (14 kg)
50 0.625 in (15.88 mm) 0.400 in (10.16 mm) 4,880 lb (2,210 kg) 49 lb (22 kg)
60 0.750 in (19.05 mm) 0.469 in (11.91 mm) 7,030 lb (3,190 kg) 70 lb (32 kg)
80 1.000 in (25.40 mm) 0.625 in (15.88 mm) 12,500 lb (5,700 kg) 125 lb (57 kg)
100 1.250 in (31.75 mm) 0.750 in (19.05 mm) 19,531 lb (8,859 kg) 195 lb (88 kg)
120 1.500 in (38.10 mm) 0.875 in (22.23 mm) 28,125 lb (12,757 kg) 281 lb (127 kg)
140 1.750 in (44.45 mm) 1.000 in (25.40 mm) 38,280 lb (17,360 kg) 383 lb (174 kg)
160 2.000 in (50.80 mm) 1.125 in (28.58 mm) 50,000 lb (23,000 kg) 500 lb (230 kg)
180 2.250 in (57.15 mm) 1.460 in (37.08 mm) 63,280 lb (28,700 kg) 633 lb (287 kg)
200 2.500 in (63.50 mm) 1.562 in (39.67 mm) 78,175 lb (35,460 kg) 781 lb (354 kg)
240 3.000 in (76.20 mm) 1.875 in (47.63 mm) 112,500 lb (51,000 kg) 1,000 lb (450 kg

For mnemonic purposes, below is another presentation of key dimensions from the same standard, expressed in fractions of an inch (which was part of the thinking behind the choice of preferred numbers in the ANSI standard):

Pitch (inches) Pitch expressed
in eighths
ANSI standard
chain number
Width (inches)
14 28 25 18
38 38 35 316
12 48 41 14
12 48 40 516
58 58 50 38
34 68 60 12
1 88 80 58

Notes:
1. The pitch is the distance between roller centers. The width is the distance between the link plates (i.e. slightly more than the roller width to allow for clearance).
2. The right-hand digit of the standard denotes 0 = normal chain, 1 = lightweight chain, 5 = rollerless bushing chain.
3. The left-hand digit denotes the number of eighths of an inch that make up the pitch.
4. An “H” following the standard number denotes heavyweight chain. A hyphenated number following the standard number denotes double-strand (2), triple-strand (3), and so on. Thus 60H-3 denotes number 60 heavyweight triple-strand chain.
 A typical bicycle chain (for derailleur gears) uses narrow 1⁄2-inch-pitch chain. The width of the chain is variable, and does not affect the load capacity. The more sprockets at the rear wheel (historically 3-6, nowadays 7-12 sprockets), the narrower the chain. Chains are sold according to the number of speeds they are designed to work with, for example, “10 speed chain”. Hub gear or single speed bicycles use 1/2″ x 1/8″ chains, where 1/8″ refers to the maximum thickness of a sprocket that can be used with the chain.

Typically chains with parallel shaped links have an even number of links, with each narrow link followed by a broad one. Chains built up with a uniform type of link, narrow at 1 and broad at the other end, can be made with an odd number of links, which can be an advantage to adapt to a special chainwheel-distance; on the other side such a chain tends to be not so strong.

Roller chains made using ISO standard are sometimes called as isochains.

 

WHY CHOOSE US 

1. Reliable Quality Assurance System
2. Cutting-Edge Computer-Controlled CNC Machines
3. Bespoke Solutions from Highly Experienced Specialists
4. Customization and OEM Available for Specific Application
5. Extensive Inventory of Spare Parts and Accessories
6. Well-Developed CZPT Marketing Network
7. Efficient After-Sale Service System

 

The 219 sets of advanced automatic production equipment provide guarantees for high product quality. The 167 engineers and technicians with senior professional titles can design and develop products to meet the exact demands of customers, and OEM customizations are also available with us. Our sound global service network can provide customers with timely after-sales technical services.

We are not just a manufacturer and supplier, but also an industry consultant. We work pro-actively with you to offer expert advice and product recommendations in order to end up with a most cost effective product available for your specific application. The clients we serve CZPT range from end users to distributors and OEMs. Our OEM replacements can be substituted wherever necessary and suitable for both repair and new assemblies.

 

 

 

 

 

Shipping Cost:

Estimated freight per unit.



To be negotiated
Usage: Transmission Chain, Drag Chain, Conveyor Chain, Dedicated Special Chain
Material: Alloy
Surface Treatment: Polishing
Samples:
US$ 0/Meter
1 Meter(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

bush chain

Can a bush chain be used in continuous operation applications?

Yes, a bush chain can be used in continuous operation applications. Continuous operation refers to a scenario where the chain is constantly in motion without significant periods of rest.

Bush chains are designed to handle continuous operation and are commonly used in various industrial applications that require continuous power transmission or material handling. They are known for their durability, reliability, and ability to withstand prolonged use.

When selecting a bush chain for continuous operation, it is important to consider factors such as the chain’s load capacity, speed rating, lubrication requirements, and overall durability. It’s crucial to choose a chain that is specifically designed for continuous operation to ensure optimal performance and longevity.

Regular maintenance, including proper lubrication and periodic inspections, is essential to ensure the smooth operation and longevity of the bush chain in continuous applications. Following the manufacturer’s guidelines for maintenance and lubrication intervals is crucial to prevent premature wear and ensure reliable operation.

Overall, bush chains are well-suited for continuous operation applications and provide a reliable means of power transmission or material handling in various industries.

bush chain

What are the common signs of wear and tear in a bush chain?

As a bush chain is subjected to regular use and stress, it can exhibit signs of wear and tear over time. Here are some common indicators to look out for:

1. Chain Elongation: One of the most apparent signs of wear in a bush chain is elongation. This occurs when the chain’s pitch increases due to the stretching of the bushings, resulting in a loose and elongated chain. Elongation can lead to improper engagement with the sprockets and affect the overall performance of the chain.

2. Pin and Bushing Wear: The pins and bushings of a bush chain experience friction and wear during operation. Excessive wear can be observed as grooves or significant flattening of the pin surfaces or bushing bores. This wear can lead to increased clearances, reduced chain strength, and compromised performance.

3. Plate Wear: The inner and outer plates of a bush chain can also exhibit signs of wear. This can include visible signs of erosion, thinning of the plates, or rough surfaces. Plate wear can affect the chain’s overall strength and increase the risk of failure.

4. Sprocket Wear: Wear on the teeth of the sprockets is another indication of chain wear. Excessive wear can result in irregular tooth profiles, tooth tip thinning, or significant tooth wear. Sprocket wear can lead to poor chain engagement, increased noise, and reduced efficiency.

5. Misalignment: Misalignment of the chain can cause uneven wear on the pins, bushings, and plates. Signs of misalignment include uneven wear patterns, abnormal noise during operation, and premature failure of the chain components.

6. Increased Noise and Vibration: Excessive wear in a bush chain can result in increased noise and vibration during operation. Unusual rattling, clanking, or grinding sounds may indicate worn-out components or poor chain engagement.

Regular inspection of the chain and being attentive to these signs of wear and tear is crucial. When any of these signs are noticed, it is recommended to take appropriate measures such as replacing the chain or repairing the worn components to ensure the safe and efficient operation of the equipment.

bush chain

What are the applications of bush chains in industrial settings?

Bush chains, also known as bush roller chains or bushing chains, have a wide range of applications in various industrial settings. Their versatility and durability make them suitable for demanding environments and heavy-duty applications. Here are some common industrial applications of bush chains:

1. Industrial Machinery: Bush chains are used in a wide range of industrial machinery, including conveyors, material handling equipment, packaging machines, printing presses, and textile machinery. They provide reliable power transmission and can handle high loads and continuous operation.

2. Agricultural Equipment: Bush chains are extensively used in agricultural machinery such as tractors, combines, harvesters, and irrigation systems. They facilitate the transfer of power from the engine to various agricultural implements and enable efficient operation in tough farming conditions.

3. Automotive Systems: Bush chains find applications in automotive systems such as timing drives, camshaft drives, and engine oil pumps. They ensure precise synchronization of engine components and reliable power transmission for efficient and smooth operation.

4. Material Handling: Bush chains are commonly used in material handling equipment like forklifts, hoists, and cranes. They enable the lifting and movement of heavy loads and ensure reliable power transmission in demanding industrial environments.

5. Mining and Construction: In the mining and construction industries, bush chains are employed in equipment such as excavators, bulldozers, crushers, and conveyor systems. They can withstand harsh conditions, high loads, and abrasive materials commonly encountered in these industries.

6. Power Transmission: Bush chains are utilized in power transmission systems where torque and speed need to be transferred from one component to another. They are commonly found in power plants, pulp and paper mills, steel mills, and other heavy industrial applications.

7. Food Processing: Bush chains designed for food-grade applications are used in the food processing industry. They comply with strict hygiene and sanitation standards and are resistant to corrosion, allowing for safe and efficient operation in food production lines.

Overall, bush chains play a vital role in numerous industrial applications, providing reliable and efficient power transmission, durability, and resistance to harsh operating conditions. Their adaptability and strength make them a preferred choice in various industrial sectors.

China wholesaler Chain Industrial Manufacturer Motorcycle Chain 32B-2 B Series Carbon Steel Short Pitch Precision Duplex Conveyor Roller Chains and Bush Chains with Spare Parts  China wholesaler Chain Industrial Manufacturer Motorcycle Chain 32B-2 B Series Carbon Steel Short Pitch Precision Duplex Conveyor Roller Chains and Bush Chains with Spare Parts
editor by CX 2023-08-31

China Professional Industrial Forging Chain with Machinery Parts and Roller

Product Description

About Factory 

With more than 18 years’ histiory, we are a professinal manufacturer for drop forged products such as forged chain (X348 X458 X658 X678 X698 F100 F160), scraper chain (10160, 14218, 14226, 142N), conveyor trolley (X348, X458, X678, XT160), and drive chain (X348, X458, X678), and so forth standard moulds of chain. 

Besides, we can also produce as per your drawing or sample, special link chain, pusher, pin and plate, according to customers’ unique requirements.

Product Description

1) Material: Alloy steel, 40Cr, 42CrMo and so on.
2) Types: Standard types, X348 X458 X678, and so on. (Or as per your drawing)
3) Process: Moulding→Forging→Polishing & Blasting→Fine machining→Heat treatment→Blasting→Inspecting & testing→Packing

Product Show
 

Technical Data
 

Model Dimension Weight (Kg) Material Hardness Working Load (KN) Limit Load (KN)
P T C S F R D
10160B 101.6 24 36 13 14 6 14 0.32 20CrMnTi Surface HRC56-64°    
Depth 0.6-1.2mm
18 100
10160 101.6 30 36 13 14.5 9 14 0.36 20CrMnTi Surface HRC56-64°     Depth 0.6-1.2mm 21.6 120
14218 142 42 50 19 20.5 11 25 1.15 20CrMnTi Surface HRC56-64°     Depth 0.6-1.2mm 48.6 270
14226 142 62 50 28 30 15 25 1.75 20CrMnTi Surface HRC56-64°     Depth 0.6-1.2mm 61.2 340
2571 200 66 60 30 32 18 30 2.8 20CrMnTi Surface HRC56-64°     Depth 0.6-1.2mm 72 400
26014 260 70 75 31 33 20 34 5.2 20CrMnTi Surface HRC56-64°     Depth 0.6-1.2mm 135 750
142N 142 43 50 19 22 12.5 25 1.2 40Cr Quench HRC36-44° 75.6 420
150D 142 42 50 19 20.5 11 25 1.15 40Cr Quench HRC36-44° 75.6 420
MG20 200 70 50 27 29 17 35 3.78 40Cr Quench HRC36-44° 144 800
MG20B 200 70 50 27 29 17 30 3.82 40Cr Quench HRC36-44° 140.4 780
MG20C 200 70 50 27 29 17 28 3.85 40Cr Quench HRC36-44° 122.4 680
MS32 200 42 50 20 22 12 25 1.4 40Cr Quench HRC36-44° 75.6 420
MS55 200 80 70 35 38 25 28 4.36 40Cr Quench HRC36-44° 138.6 770
3006 200 65 70 30 33 24 32 3.6 40Cr Quench HRC36-44° 160.2 890
MS63 250 70 80 30 33 20 32 4.93 40Cr Quench HRC36-44° 147.6 820
S16 100 30 27 15 16 8 14 0.3 40Cr Quench HRC36-44° 16 88
S20 125 34 33 17 18 8 17 0.37 40Cr Quench HRC36-44° 19.4 108
S25 160 48 39 23 25 13 20 1.28 40Cr Quench HRC36-44° 55.8 310
S30 142 46 49 22 23.5 14 25 1.3 40Cr Quench HRC36-44° 91.8 510
Z16 100 40 35 18 20 12 17 0.4 40Cr Quench HRC36-44° 32.4 180
Z20 125 50 46 24 26 15 20 0.67 40Cr Quench HRC36-44° 59.4 330
Z20D 125 52 60 24 26 16 26 1.15 40Cr Quench HRC36-44° 82.8 460
Z25 160 58 55 28 30 18 25 2.25 40Cr Quench HRC36-44° 82.8 460
Z25D 160 66 64 29 31 22 28 2.6 40Cr Quench HRC36-44° 120.6 670
Z30 142 64 50 29 30.5 18 25 1.8 40Cr Quench HRC36-44° 111.6 620

Products & Testing Equipments
 

Products Application


Packing & Delivery
 

Why Choose Us?

1. We are engaged in chain industry over 15 years with rich market experience. We keep improving production techniques. All the products have longer working life and have passed the market test.

2. We can design the correct chains with high quality material, good abrasion resistance, good corrosion, high strengthen and etc as per your request or the chain application.

3. We are the chain manufacturer; you can directly purchase the product from us with low price and high quality.

4. We have a professional team for international trade, they have abundant experiences and are always ready to solve problems for customers. So you have nothing to worry about.

5. We have the long-term cooperative forwarder who can give us the lowest freight. And it can help you to save the freight. What’s more, for the FCL, we will design the packages as per the container sizes with the largest capacity to save the shipping cost for both of us.

 

Shipping Cost:

Estimated freight per unit.



To be negotiated
Standard or Nonstandard: Standard
Application: Textile Machinery, Garment Machinery, Conveyer Equipment, Packaging Machinery, Electric Cars, Motorcycle, Food Machinery, Mining Equipment, Agricultural Machinery, Coating, Spraying, Mining, Slaughtering, Assembly
Surface Treatment: Polishing
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

bush chain

What are the maintenance requirements for a bush chain?

Maintaining a bush chain is essential to ensure its optimal performance and longevity. Here are the key maintenance requirements for a bush chain:

1. Regular cleaning: Regularly clean the bush chain to remove dirt, debris, and contaminants that can cause abrasion and accelerated wear. Use a brush or compressed air to clean the chain thoroughly.

2. Lubrication: Proper lubrication is crucial for the smooth operation and reduced friction of a bush chain. Apply the recommended lubricant to all the chain components, including the pins, bushings, and rollers. Follow the manufacturer’s guidelines for the appropriate lubricant type and frequency of lubrication.

3. Tension adjustment: Check the tension of the bush chain regularly and adjust it if necessary. Proper tension ensures optimal performance and reduces the risk of premature wear or failure. Consult the manufacturer’s guidelines or expert advice for the correct tensioning procedure specific to your chain.

4. Inspection: Conduct regular inspections of the bush chain to identify any signs of wear, damage, or misalignment. Inspect the chain for elongation, broken or damaged components, and misalignment. Replace any worn or damaged parts promptly to prevent further issues.

5. Replace worn components: Over time, the components of a bush chain, such as pins, bushings, and rollers, may wear out and require replacement. Monitor the wear levels of these components and replace them when they reach the manufacturer’s recommended limits.

6. Environmental considerations: Consider the operating environment of the bush chain and take appropriate measures to protect it. In corrosive or harsh environments, use corrosion-resistant chain materials or coatings to prevent accelerated wear.

7. Training and documentation: Ensure that maintenance personnel are properly trained in bush chain maintenance procedures. Keep detailed records of maintenance activities, including lubrication schedules, tension adjustments, and component replacements.

By following these maintenance requirements, you can extend the lifespan of your bush chain and maintain its optimal performance. Regular maintenance and timely replacement of worn components will help prevent unexpected failures and costly downtime.

bush chain

Can a bush chain be retrofitted into an existing system?

Yes, a bush chain can be retrofitted into an existing system in many cases. Retrofits are common when there is a need to upgrade or replace the existing chain with a more efficient or higher-quality option. The process of retrofitting a bush chain typically involves the following steps:

1. Evaluation of the existing system: The first step is to assess the existing system and determine if a bush chain can be installed. Factors such as space availability, compatibility with existing components, and load requirements need to be considered.

2. Selection of the appropriate bush chain: Once the system has been evaluated, the next step is to select the appropriate bush chain for the retrofit. This involves considering factors such as pitch, size, strength, and material compatibility to ensure a proper fit and optimal performance.

3. Modification of the system: Depending on the design of the existing system, some modifications may be required to accommodate the bush chain. This could involve adjusting the sprockets, modifying the chain guides, or making other necessary changes to ensure proper alignment and tensioning.

4. Installation of the bush chain: Once the modifications have been made, the bush chain can be installed into the existing system. This typically involves removing the old chain and replacing it with the new bush chain. Proper tensioning and alignment should be ensured during the installation process.

5. Testing and adjustments: After the bush chain is installed, it is important to conduct thorough testing to ensure proper operation. This includes checking for smooth movement, correct tension, and proper engagement with the sprockets. Any necessary adjustments should be made to optimize performance.

It is important to note that the feasibility of retrofitting a bush chain into an existing system depends on the specific requirements and design of the system. In some cases, additional modifications or adaptations may be needed to ensure compatibility and performance. Consulting with a qualified engineer or chain manufacturer can help determine the best approach for retrofitting a bush chain into an existing system.

bush chain

What are the advantages of using a bush chain in power transmission systems?

Using a bush chain in power transmission systems offers several advantages:

1. High Strength: Bush chains are designed to handle high loads and provide reliable power transmission. They are capable of transmitting substantial amounts of torque, making them suitable for heavy-duty applications.

2. Efficient Power Transfer: Bush chains have low frictional losses, resulting in efficient power transfer from the driving source to the driven components. This efficiency helps optimize system performance and reduce energy consumption.

3. Wide Speed Range: Bush chains can operate at various speeds, from low to high, allowing flexibility in power transmission systems. They can accommodate different rotational speeds and adapt to the specific requirements of the application.

4. Compact Design: Bush chains have a compact and space-saving design, making them suitable for applications where space is limited. Their efficient power transmission capabilities enable the use of smaller and more compact components.

5. Long Service Life: When properly maintained, bush chains have a long service life. They are designed to withstand demanding operating conditions and provide reliable performance over an extended period. This reduces the need for frequent replacements and minimizes downtime.

6. Versatility: Bush chains are available in various sizes, configurations, and materials, allowing them to be used in a wide range of power transmission applications. They can be customized to meet specific requirements, making them versatile for use in different industries and applications.

7. Cost-Effective: Bush chains offer a cost-effective solution for power transmission systems. They are durable, readily available, and relatively easy to install and maintain. Their long service life and efficient operation contribute to overall cost savings in terms of maintenance, replacement, and energy consumption.

When selecting a power transmission system, considering the advantages of using a bush chain can help ensure optimal performance, reliability, and efficiency in the application.

China Professional Industrial Forging Chain with Machinery Parts and Roller  China Professional Industrial Forging Chain with Machinery Parts and Roller
editor by CX 2023-08-23

China Hot selling Forged Industry Steel Forging Chain and Scraper Forged Drag Steel Chain Standard Carbon Steel Chain with Machinery Parts and Conveyor Roller Bush

Product Description

About Factory 

With more than 18 years’ histiory, we are a professinal manufacturer for drop forged products such as forged chain (X348 X458 X658 X678 X698 F100 F160), scraper chain (10160, 14218, 14226, 142N), conveyor trolley (X348, X458, X678, XT160), and drive chain (X348, X458, X678), and so forth standard moulds of chain. 

Besides, we can also produce as per your drawing or sample, special link chain, pusher, pin and plate, according to customers’ unique requirements.

Product Description

1) Material: Alloy steel, 40Cr, 42CrMo and so on.
2) Types: Standard types, X348 X458 X678, and so on. (Or as per your drawing)
3) Process: Moulding→Forging→Polishing & Blasting→Fine machining→Heat treatment→Blasting→Inspecting & testing→Packing

Product Show
 

Technical Data
 

Model Dimension Weight (Kg) Material Hardness Working Load (KN) Limit Load (KN)
P T C S F R D
10160B 101.6 24 36 13 14 6 14 0.32 20CrMnTi Surface HRC56-64°    
Depth 0.6-1.2mm
18 100
10160 101.6 30 36 13 14.5 9 14 0.36 20CrMnTi Surface HRC56-64°     Depth 0.6-1.2mm 21.6 120
14218 142 42 50 19 20.5 11 25 1.15 20CrMnTi Surface HRC56-64°     Depth 0.6-1.2mm 48.6 270
14226 142 62 50 28 30 15 25 1.75 20CrMnTi Surface HRC56-64°     Depth 0.6-1.2mm 61.2 340
2571 200 66 60 30 32 18 30 2.8 20CrMnTi Surface HRC56-64°     Depth 0.6-1.2mm 72 400
26014 260 70 75 31 33 20 34 5.2 20CrMnTi Surface HRC56-64°     Depth 0.6-1.2mm 135 750
142N 142 43 50 19 22 12.5 25 1.2 40Cr Quench HRC36-44° 75.6 420
150D 142 42 50 19 20.5 11 25 1.15 40Cr Quench HRC36-44° 75.6 420
MG20 200 70 50 27 29 17 35 3.78 40Cr Quench HRC36-44° 144 800
MG20B 200 70 50 27 29 17 30 3.82 40Cr Quench HRC36-44° 140.4 780
MG20C 200 70 50 27 29 17 28 3.85 40Cr Quench HRC36-44° 122.4 680
MS32 200 42 50 20 22 12 25 1.4 40Cr Quench HRC36-44° 75.6 420
MS55 200 80 70 35 38 25 28 4.36 40Cr Quench HRC36-44° 138.6 770
3006 200 65 70 30 33 24 32 3.6 40Cr Quench HRC36-44° 160.2 890
MS63 250 70 80 30 33 20 32 4.93 40Cr Quench HRC36-44° 147.6 820
S16 100 30 27 15 16 8 14 0.3 40Cr Quench HRC36-44° 16 88
S20 125 34 33 17 18 8 17 0.37 40Cr Quench HRC36-44° 19.4 108
S25 160 48 39 23 25 13 20 1.28 40Cr Quench HRC36-44° 55.8 310
S30 142 46 49 22 23.5 14 25 1.3 40Cr Quench HRC36-44° 91.8 510
Z16 100 40 35 18 20 12 17 0.4 40Cr Quench HRC36-44° 32.4 180
Z20 125 50 46 24 26 15 20 0.67 40Cr Quench HRC36-44° 59.4 330
Z20D 125 52 60 24 26 16 26 1.15 40Cr Quench HRC36-44° 82.8 460
Z25 160 58 55 28 30 18 25 2.25 40Cr Quench HRC36-44° 82.8 460
Z25D 160 66 64 29 31 22 28 2.6 40Cr Quench HRC36-44° 120.6 670
Z30 142 64 50 29 30.5 18 25 1.8 40Cr Quench HRC36-44° 111.6 620

Products & Testing Equipments
 

Products Application


Packing & Delivery
 

Why Choose Us?

1. We are engaged in chain industry over 15 years with rich market experience. We keep improving production techniques. All the products have longer working life and have passed the market test.

2. We can design the correct chains with high quality material, good abrasion resistance, good corrosion, high strengthen and etc as per your request or the chain application.

3. We are the chain manufacturer; you can directly purchase the product from us with low price and high quality.

4. We have a professional team for international trade, they have abundant experiences and are always ready to solve problems for customers. So you have nothing to worry about.

5. We have the long-term cooperative forwarder who can give us the lowest freight. And it can help you to save the freight. What’s more, for the FCL, we will design the packages as per the container sizes with the largest capacity to save the shipping cost for both of us.

 

Standard or Nonstandard: Standard
Application: Textile Machinery, Garment Machinery, Conveyer Equipment, Packaging Machinery, Electric Cars, Motorcycle, Food Machinery, Mining Equipment, Agricultural Machinery, Coating, Spraying, Mining, Slaughtering, Assembly
Surface Treatment: Polishing
Structure: Combined Chain
Material: Alloy
Type: Cranked Link Chain
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

bush chain

What are the safety precautions when working with bush chains?

Working with bush chains requires adherence to certain safety precautions to ensure the well-being of operators and prevent accidents. Here are some important safety measures to consider:

1. Personal protective equipment (PPE): Operators should wear appropriate PPE, including safety glasses, gloves, and protective clothing, to protect themselves from potential hazards such as flying debris, pinching, or entanglement.

2. Training and knowledge: Operators should be properly trained in the operation and maintenance of bush chains. They should have a thorough understanding of the equipment, including its components, functions, and potential hazards. Training should cover safe operating procedures, including start-up, shutdown, and emergency procedures.

3. Lockout/tagout procedures: Before performing any maintenance or repair work on a bush chain, proper lockout/tagout procedures should be followed. This involves isolating the power source, de-energizing the equipment, and securing it with lockout devices or tags to prevent accidental startup.

4. Regular inspections: Regular inspections should be conducted to identify any signs of wear, damage, or misalignment in the bush chain. This includes checking for loose bolts, worn sprockets, damaged links, or any other issues that could compromise the chain’s integrity. Any identified problems should be promptly addressed to prevent further damage or accidents.

5. Proper lifting and handling: When handling bush chains, proper lifting techniques should be employed to prevent strain or injury. Chains should be lifted using appropriate lifting equipment, and operators should avoid placing themselves in a position where they could be caught between moving parts.

6. Clean and well-maintained work environment: The work area should be clean, well-lit, and free from clutter or obstructions. This ensures that operators have clear visibility and can safely access the bush chain without tripping or other hazards.

7. Follow manufacturer guidelines: It is important to follow the manufacturer’s guidelines and recommendations for the safe use, maintenance, and inspection of the specific bush chain being used. This includes following recommended lubrication practices, tensioning guidelines, and any other instructions provided by the manufacturer.

By adhering to these safety precautions, operators can mitigate potential risks associated with working with bush chains and ensure a safe working environment for themselves and others involved in the operation and maintenance of the equipment.

bush chain

What are the benefits of using a self-lubricating bush chain?

Using a self-lubricating bush chain offers several advantages in industrial applications:

1. Reduced maintenance: Self-lubricating bush chains are designed to minimize the need for manual lubrication. They incorporate special materials or coatings that provide built-in lubrication, reducing the frequency of lubrication maintenance tasks.

2. Increased operational efficiency: The self-lubricating feature ensures consistent and proper lubrication of the bush chain, which helps to reduce friction and wear. This results in improved efficiency and smoother operation of the chain, reducing energy consumption and increasing overall system performance.

3. Extended chain life: Proper lubrication is essential for preserving the integrity and longevity of a bush chain. Self-lubricating bush chains offer superior lubrication capabilities, reducing friction and wear on the chain components. This leads to longer chain life, reducing the frequency of chain replacement and associated downtime.

4. Contamination resistance: Self-lubricating bush chains often have enhanced resistance to contaminants such as dust, dirt, and moisture. The lubrication materials or coatings used in these chains help repel or resist the entry of contaminants, reducing the risk of chain malfunction or premature failure.

5. Cost savings: By eliminating or reducing the need for manual lubrication, self-lubricating bush chains can result in cost savings associated with labor, lubrication materials, and maintenance downtime. The extended chain life also contributes to cost savings by reducing the frequency of chain replacements.

6. Environmental friendliness: Self-lubricating bush chains often use lubrication materials that are environmentally friendly, such as dry film lubricants or solid lubricants. This reduces the potential for lubricant leakage or contamination of the surrounding environment.

Overall, the use of self-lubricating bush chains provides significant benefits in terms of reduced maintenance, improved efficiency, extended chain life, contamination resistance, cost savings, and environmental considerations. These advantages make self-lubricating bush chains a preferred choice in many industrial applications where reliable and low-maintenance chain operation is essential.

bush chain

How do you select the right bush chain for your application?

Choosing the right bush chain for your application is essential to ensure optimal performance and longevity. Here are some factors to consider when selecting a bush chain:

1. Load Capacity: Evaluate the maximum load that the chain will need to transmit. Consider factors such as weight, acceleration, and shock loads. Choose a bush chain with a load capacity that exceeds the anticipated load to ensure reliable operation.

2. Speed: Determine the operating speed of the chain. Higher speeds may require chains with specialized designs to minimize wear, reduce friction, and maintain accurate timing.

3. Environmental Conditions: Assess the environmental conditions in which the chain will operate. Consider factors such as temperature, humidity, dust, chemicals, and exposure to corrosive substances. Select a bush chain that is designed to withstand the specific conditions of your application.

4. Size and Configuration: Determine the required chain size based on the available space and the dimensions of the sprockets or pulleys. Consider the pitch, width, and overall dimensions of the chain. Additionally, assess whether a standard or custom configuration is needed to meet the application requirements.

5. Lubrication Requirements: Determine the lubrication method and frequency required for the chain. Some bush chains are self-lubricating, while others may require regular lubrication. Consider the availability of lubrication systems and the maintenance requirements of the chain.

6. Reliability and Durability: Assess the expected operational lifespan and the reliability requirements of your application. Look for bush chains from reputable manufacturers known for producing high-quality, durable products. Consider factors such as wear resistance, fatigue strength, and overall reliability.

7. Cost: Evaluate the cost-effectiveness of the bush chain, considering both the initial investment and long-term maintenance costs. Balance the performance requirements with the available budget.

Consult with a knowledgeable supplier or engineer to ensure you select the right bush chain that meets your specific application requirements. They can provide guidance based on their expertise and help you choose a chain that offers optimal performance and durability.

China Hot selling Forged Industry Steel Forging Chain and Scraper Forged Drag Steel Chain Standard Carbon Steel Chain with Machinery Parts and Conveyor Roller Bush  China Hot selling Forged Industry Steel Forging Chain and Scraper Forged Drag Steel Chain Standard Carbon Steel Chain with Machinery Parts and Conveyor Roller Bush
editor by CX 2023-07-24

China Professional 450e 450g Bulldozer Excavator Loader Backhoe Rubber Track Sprocket Roller Undercarriage Parts ID1354/37 Track Link Chain Shoe Assembly roller chain breaker tool

Product Description

1. Description:

Part No.:  ID1354/37
Machine No.:  450E 450G 
Description:  Track Link
Logo:  Beneparts
Color:  Yellow or others
Production Method:  Forging/Casting
Material:  40Mn/35MnB
Surface hardness:  HRC 52 ~ 58

More products:
Bucket tooth:  product/jJArxYWdhhks/China-Spare-Parts-Track-Bushing-Excavator-Pin-40cr-42CrMo-Bucket-Link-Pin-Link-Pin-Replacement-Bucket-Tooth-Locking-Pins-Forged-Bucket-Tooth-Pin-K170-Pin-2320170.html
Rubber track: product/yQLRiCgPvAVJ/China-Mini-Excavator-Rubber-Track-Undercarriage-Dx340LC-Machinery-Lubricated-Dry-Track-Link-Shoe-Assy-Track-Chain.html

Track roller: product/jmWpigyGJLcA/China-246-571-Roller-Gp-Track-Single-Flange-Excavator-Undercarriage-Parts-Down-Upper-Lower-Roller-Idler-Sprocket-Track-Roller.html
Grader blade:  product/XZlfQcLdlFhi/China-Construction-Machinery-Parts-Grader-Blade-Motor-Grader-Carbon-Steel-Boron-Steel-Dbf-Cutting-Edge-Bulldozer-4t6694.html
Track link chain:  product/yQLRiCgPvAVJ/China-Mini-Excavator-Rubber-Track-Undercarriage-Dx340LC-Machinery-Lubricated-Dry-Track-Link-Shoe-Assy-Track-Chain.html
Bucket:  product/UdMAiYuwXGhW/China-China-Heavy-Equipment-Buckets-Wh60c-Q345b-3-4cx-12-Bucket.html
Chocky bar:  product/kyPmTlxusBhU/China-Excavator-Bucket-Protection-Spare-Parts-CB1-Teeth-Pins-Retainer-Bushing-Locker-80-125r.html
2. Our products range

  
3. Our production line:

4.Popular items blow for reference:

Brand Model
Track Roller,                                                            Top Roller,                                                      Sprocket,                                                          Idler,                                                            Track Link,                                                         Track Shoes
   PC18-2 PC20-5/7 PC30-5/6/7/8 PC40-5/6/7
PC50/PC55 PC60-5/6/7 PC100-5/6/7 PC120-5-6-7
PC200-3/5/6/7/8 PC220-3/5/6/7/8 PC200LC-3/5/6/7/8 PC220-3/5/6/7/8
PC300-5-6-7 PC300LC-/5-6-7 PC350-5/6/7 PC350LC-5/6/7
PC360-5/6/7 PC360LC-5/6/7 PC400-1/3/5/6/7 PC400LC-1/3/5/6/7
PC450-5/6/7 PC450LC-5/6/7 PC600 PC800
   
   EX30 EX40 EX55 EX60-2/3/5
EX70 EX100-1/3/5/ EX120-1/3/5 EX150
EX200-1/2/3/5 EX200LC-1/2/3/5 EX220-1/2/3/5 EX220LC-1/2/3/5
EX270-1/2/5 EX270LC-1/2/5 EX300-1/2/3/5 EX300LC-1/2/3/5
EX330 EX330LC EX400-1/2/3/5 EX400LC-1/2/3/5
EX450-1/2/3/5 EX450LC-1/2/3/5 UH07-7 UH081
UH083 UH045 UH571  
   
  ZAX55 ZAX70 ZAX120 ZAX200
ZAX210 ZAX230 ZAX240 ZAX330
ZAX450      
   
       
   
     DH55 DH80 DH130 DH150
DH220 DH258 DH280 DH300
DH320 DH360 DH370 DH400
DH420 DH500    
DX300 DX370 DX380  
   
  SK035 SK035SR SK30 SK35
SK45 SK50-1 SK50-6 SK55
SK60-3 SK60-1/2/5 SK60-8 SK100
SK120 SK130-8 SK200-3/5/8 SK210
SK230 SK250 SK300 SK320
SK330 SK350 SK07N2  
   
    SH35 SH55 SH60 SH65
SH75 SH100 SH120 SH120A3
SH200 SH220 SH265 SH280
SH300 SH320 SH340 SH350
SH430 LS2800    
   
    HD250 HD400 HD450 HD700
HD770 HD820 HD1571 HD1250
HD1430      
   
      R55 R60-5/7/8 R80 R130
R150LC-7 R200 R210-3 R220-5
R225-7 R275 R290 R300
R320 R305 R360 R450
   
  R914 R924 R934C R944C
   
  CX35 CX45 CX55 CX240
   
  KX35 KX50 KX55 KX80
KX185      
   
  SWE35 SWE40 SWE50 SWE55
SWE60 SWE70 SWE85 SWE330
   
  IHI30 IHI35 IHI80 IHI85
   
  TB150 TB175    
   
  FR65 FR85    
   
   
       SY65 SY200 SY215 SY330
   
     YC13 YC35 YC45 YC60
YC85 YC135    
   
   
   VIO30 YM30 VIO35 YM35 VIO40 YM40 VIO55 YM55
VIO75 YM75      
   
    D3B D3C D4 D4D D4E
D4H D5 D5B D5C
D5H D5M D5N D6
D6C D6D D6R D6H
D6T D7G D7R D7H
D8N D8L D8T D8R
D8H D8K D9L D9N
D9R D9T D10N D10R
D10T D11N D11R  
   
   D20 D31 D37EX-21 D40
D41P-6 D41E-6 D50 D53
D51EX-22 D60 D65 D65-12
D61EX-12 D65EX-12 D65PX-12 D80
D85 D85EX-15 D85-21 D155
D155A-1 D155A-2 D155A-3 D155A-5
D155-6 D275 D355A-3 D375-5
BD2G      

5. Our warehouse:

6.Company information

HangZhou CZPT Machinery co., Ltd as your reliable Undercarriage parts supplier, offering full range of replacement parts suitable for all kinds of earthmoving machines which apply to mining, construction, agriculture etc. Like Excavator, Bulldozer, Loader, Backhoe, Scraper, Crusher and so on. The replacement parts that we supply including casting parts like idler, sprocket, top roller, track link, track roller, track shoes…, etc. and forged parts like forged idler, sprocket, top roller, track link, track roller, track shoes…, etc. 
 
Beneparts has a very strong sales team and firmly cooperated manufacturer with high-tech and focus on quality with more than 28 years experience.
 
Our advantages are 4 fold, our:
1.strong technical team, and we have the ability to formulate materials to meetthe specific needs of our customer’s projects.
2.Perfect quality monitoring system, and full range of advanced facilities, like Component analysis machine, Impact Machine, Tensile Strength machine etc.
3. Rich experience to do OEM/ODM business, we can develop items as per drawings and samples if you have specific requirement.
4. Efficient management, we can short delivery time and we have good after sale service which keep long term business cooperation with our customers.
 
Our commitment to you is always providing quick, convenient, effective customer service.
Look CZPT to meeting you!

Shipping Cost:

Estimated freight per unit.



To be negotiated
Type: Track Link
Application: Bulldozer
Certification: CE
Customization:
Available

|

Customized Request

chain

What to look for in a roller chain

There are many different factors to consider when purchasing a roller chain. One of the most important factors is tensile strength, which represents the force required to break the chain. Roller chains are available in three different tensile strengths: minimum, average and ultimate. Each strength reflects a different limit to the load the chain can handle. However, these limits are not always equal and you should be aware of the differences between roller chains.

Canonical chain

Most roller chains have standard sizes printed on the side panels. This is usually “40” or “C2080H”, but can also be the letter “B”. If the chain is old, it will need to be cleaned to see its size. You can find the size on the standard roller chain size chart, but not everyone is marked. To determine the size, measure the diameter and pitch of the chain, then compare the results to the chart to see what size you need.
Heavy-duty roller chains are available with heat-treated pins, side plates, and rollers. In addition to being heat treated, they are also factory pre-stretched, which reduces wear on these parts. If properly maintained, they can last for years, reducing the risk of failure or corrosion. Depending on the application, standard roller chains are available in different sizes. It can be purchased separately. There are several options to choose from, depending on the size and strength of the application.
PEER roller chains contain solid rollers to reduce shock loads on the sprocket teeth. Heat treating and preloading all components of the PEER chain helps minimize initial elongation. Hot-dip lubrication ensures complete lubrication of all chain components, extending their life and reducing maintenance costs. For heavy-duty applications, ASME/ANSI-B29.1 chain is a good choice.
Standard roller chains are made of steel or alloy steel. However, it can be made of other materials such as stainless steel. In addition to steel, stainless steel is often used in food processing machinery where chain lubrication is an issue. Brass and nylon are also sometimes used. However, they are not that popular. Therefore, you should always check with your supplier before purchasing. By comparing the tensile strength of two different chains and making an informed decision, you can get the best price and service.

Chain without bushing

Bushless roller chains have advantages over conventional roller chains. Unlike conventional chains, bushless chains have extensive lateral flexibility, which increases the chain’s lubrication flow. The inner plates of bushless chains have protruding shoulders so the oil can flow through them more easily and efficiently. This is an important characteristic of a smooth-running chain. Additionally, bushless chains may have improved shifting performance.
The strength of a bushingless roller chain is measured in terms of tensile strength and fatigue strength. The former measures the load a chain can withstand before breaking. Fatigue strength is equally important, and factors that affect fatigue strength include the steel used to make the chain components, the pitch hole fabrication, the type of shot peening on the chain, and the design and thickness of the chain. For example, if the chain is too thin, it may not be enough for heavy-duty applications.
Like traditional roller chains, bushingless roller chains have two different types of links. The inner link has two inner plates connected by pins, while the outer chain has two outer plates held together by bushings. A bushingless roller chain is similar to a traditional chain, except it eliminates a step in the assembly process by stamping the tube into the inner plate. So if you want a smoother ride, a bushingless roller chain is a better choice.
There are two different sizes of bushingless roller chains. One size is designed for use with standard single-strand chains, while the other size is designed for use with double-strand or triple-strand chains. Bushless chains are generally shorter than conventional chains, so they can fit in tighter spaces. Bushless chains are made of the highest quality materials. These chain attachments are case hardened for optimum strength and durability.

Mute chain

The silent roller chain has a smooth, low-noise drive. They are made of stacked rows of flat chainplates with a gear-like profile that meshes with the sprocket teeth. Each chainplate is attached to a corresponding sprocket, which also allows the chain to bend. While these basic components are the same for every silent roller chain, there are many variations that allow them to be used in a variety of applications.
The most popular high-speed transmission, silent chains feature gear-like sprockets. They can be made from single or multiple strands of material. Single-strand chains are less expensive than multi-strand chains, but they tend to wear out faster if not lubricated. Single-strand roller chains can be used for years without lubrication, but for your application, wide silent chains are still worth considering.
The design and construction of silent chains make them ideal for conveying a wide variety of products. They have flat, heat-resistant surfaces. They are also durable and non-slip. They are available in a variety of pitch sizes, widths, and mounting styles. Whether you need chains for general purpose conveyors or glass bottle transport applications, we have you covered. Ask about the benefits of silent roller chain conveyors.
Inverted tooth chains are another option for quieter chains. These chains are designed to reduce noise from engine-related friction. Silent chains are more common, and manufacturers have fallen in love with them. A silent chain consists of several links connected to the sprocket teeth. Teeth rotate to reduce noise, vibration, and chord action. These are the main reasons why silent chains are so popular.
chain

ANSI chain pitch

To measure your bike’s chain pitch, you can use a caliper. This measurement is taken from the center of the rolling pin to the center of the next rolling pin. Chains come in many sizes, but ANSI is the most common chain standard in the United States. A caliper is handy if you’re not sure which size to buy, as it allows you to check for worn sprockets.
Chains that meet ANSI standards will be characterized by a certain pitch. This measurement is based on the width and spacing of the roll. The spacing is usually greater than the width. The standard number will be the right number for the width of the chain or the left number for the rollers. The number on the left indicates whether the chain is lightweight or heavyweight. Heavyweight chains are designated by the suffix “H”.
Common chain sizes are based on ANSI chain pitch. Pitch is the minimum distance between bushing and sprocket. The smaller the chain pitch, the greater the total distance between the two points. This means the chain will last longer. However, if you are buying a chain for a specific application, you should check the pitch carefully as it can affect the performance of the chain.

Roller chain wear measurement

The purpose of roller chain wear measurement is to prevent breakage by monitoring the strain on the chain. There are several ways to measure roller chain wear. The first is to remove the chain from its working position and measure the distance from the sprocket to its measuring end. Another way is to measure the pitch of the chain or the distance between two pins. This method is superior to other methods because it is convenient and accurate.
When measuring the wear of a roller chain, it is important to note that the elements of the chain will gradually deform. About 3.75% of the total wear will be on the pins and the rest will be on the internal links. These wear measurements will vary based on the nominal pitch of the chain and the amount of friction the chain is experiencing. Proper lubrication between pins and bushings, load and frequency of articulation all affect wear rates.
It is important to measure the amount of wear on the roller chain to avoid excessive machine failures. The longer the chain runs, the more wear it will wear. Although the length of the chain should be less than the center distance, the excessive load will cause premature wear. Therefore, lubrication is essential. Additionally, the sag of the chain should not exceed 2% to 4% of its center-to-center distance. Finally, check for unusual noise or visible defects. A common cause of excessive roller chain wear is the size of the load. Every chain manufacturer sets a maximum workload for its product.
There are several ways to measure roller chain wear. If using a high-speed drive, it should have at least 11 teeth, and a medium-speed drive should have at least 25 teeth. Also, be sure to check the length of the chain, even if you should. The same goes for the pin diameter, which should be the same or different pitch as the roller chain.

China Professional 450e 450g Bulldozer Excavator Loader Backhoe Rubber Track Sprocket Roller Undercarriage Parts ID1354/37 Track Link Chain Shoe Assembly   roller chain breaker toolChina Professional 450e 450g Bulldozer Excavator Loader Backhoe Rubber Track Sprocket Roller Undercarriage Parts ID1354/37 Track Link Chain Shoe Assembly   roller chain breaker tool
editor by CX 2023-06-05

China Hot selling 450e 450g Bulldozer Excavator Loader Backhoe Rubber Track Sprocket Roller Undercarriage Parts ID1354/37 Track Link Chain Shoe Assembly roller chain components

Product Description

1. Description:

Part No.:  ID1354/37
Machine No.:  450E 450G 
Description:  Track Link
Logo:  Beneparts
Color:  Yellow or others
Production Method:  Forging/Casting
Material:  40Mn/35MnB
Surface hardness:  HRC 52 ~ 58

More products:
Bucket tooth:  product/jJArxYWdhhks/China-Spare-Parts-Track-Bushing-Excavator-Pin-40cr-42CrMo-Bucket-Link-Pin-Link-Pin-Replacement-Bucket-Tooth-Locking-Pins-Forged-Bucket-Tooth-Pin-K170-Pin-2320170.html
Rubber track: product/yQLRiCgPvAVJ/China-Mini-Excavator-Rubber-Track-Undercarriage-Dx340LC-Machinery-Lubricated-Dry-Track-Link-Shoe-Assy-Track-Chain.html

Track roller: product/jmWpigyGJLcA/China-246-571-Roller-Gp-Track-Single-Flange-Excavator-Undercarriage-Parts-Down-Upper-Lower-Roller-Idler-Sprocket-Track-Roller.html
Grader blade:  product/XZlfQcLdlFhi/China-Construction-Machinery-Parts-Grader-Blade-Motor-Grader-Carbon-Steel-Boron-Steel-Dbf-Cutting-Edge-Bulldozer-4t6694.html
Track link chain:  product/yQLRiCgPvAVJ/China-Mini-Excavator-Rubber-Track-Undercarriage-Dx340LC-Machinery-Lubricated-Dry-Track-Link-Shoe-Assy-Track-Chain.html
Bucket:  product/UdMAiYuwXGhW/China-China-Heavy-Equipment-Buckets-Wh60c-Q345b-3-4cx-12-Bucket.html
Chocky bar:  product/kyPmTlxusBhU/China-Excavator-Bucket-Protection-Spare-Parts-CB1-Teeth-Pins-Retainer-Bushing-Locker-80-125r.html
2. Our products range

  
3. Our production line:

4.Popular items blow for reference:

Brand Model
Track Roller,                                                            Top Roller,                                                      Sprocket,                                                          Idler,                                                            Track Link,                                                         Track Shoes
   PC18-2 PC20-5/7 PC30-5/6/7/8 PC40-5/6/7
PC50/PC55 PC60-5/6/7 PC100-5/6/7 PC120-5-6-7
PC200-3/5/6/7/8 PC220-3/5/6/7/8 PC200LC-3/5/6/7/8 PC220-3/5/6/7/8
PC300-5-6-7 PC300LC-/5-6-7 PC350-5/6/7 PC350LC-5/6/7
PC360-5/6/7 PC360LC-5/6/7 PC400-1/3/5/6/7 PC400LC-1/3/5/6/7
PC450-5/6/7 PC450LC-5/6/7 PC600 PC800
   
   EX30 EX40 EX55 EX60-2/3/5
EX70 EX100-1/3/5/ EX120-1/3/5 EX150
EX200-1/2/3/5 EX200LC-1/2/3/5 EX220-1/2/3/5 EX220LC-1/2/3/5
EX270-1/2/5 EX270LC-1/2/5 EX300-1/2/3/5 EX300LC-1/2/3/5
EX330 EX330LC EX400-1/2/3/5 EX400LC-1/2/3/5
EX450-1/2/3/5 EX450LC-1/2/3/5 UH07-7 UH081
UH083 UH045 UH571  
   
  ZAX55 ZAX70 ZAX120 ZAX200
ZAX210 ZAX230 ZAX240 ZAX330
ZAX450      
   
       
   
     DH55 DH80 DH130 DH150
DH220 DH258 DH280 DH300
DH320 DH360 DH370 DH400
DH420 DH500    
DX300 DX370 DX380  
   
  SK035 SK035SR SK30 SK35
SK45 SK50-1 SK50-6 SK55
SK60-3 SK60-1/2/5 SK60-8 SK100
SK120 SK130-8 SK200-3/5/8 SK210
SK230 SK250 SK300 SK320
SK330 SK350 SK07N2  
   
    SH35 SH55 SH60 SH65
SH75 SH100 SH120 SH120A3
SH200 SH220 SH265 SH280
SH300 SH320 SH340 SH350
SH430 LS2800    
   
    HD250 HD400 HD450 HD700
HD770 HD820 HD1571 HD1250
HD1430      
   
      R55 R60-5/7/8 R80 R130
R150LC-7 R200 R210-3 R220-5
R225-7 R275 R290 R300
R320 R305 R360 R450
   
  R914 R924 R934C R944C
   
  CX35 CX45 CX55 CX240
   
  KX35 KX50 KX55 KX80
KX185      
   
  SWE35 SWE40 SWE50 SWE55
SWE60 SWE70 SWE85 SWE330
   
  IHI30 IHI35 IHI80 IHI85
   
  TB150 TB175    
   
  FR65 FR85    
   
   
       SY65 SY200 SY215 SY330
   
     YC13 YC35 YC45 YC60
YC85 YC135    
   
   
   VIO30 YM30 VIO35 YM35 VIO40 YM40 VIO55 YM55
VIO75 YM75      
   
    D3B D3C D4 D4D D4E
D4H D5 D5B D5C
D5H D5M D5N D6
D6C D6D D6R D6H
D6T D7G D7R D7H
D8N D8L D8T D8R
D8H D8K D9L D9N
D9R D9T D10N D10R
D10T D11N D11R  
   
   D20 D31 D37EX-21 D40
D41P-6 D41E-6 D50 D53
D51EX-22 D60 D65 D65-12
D61EX-12 D65EX-12 D65PX-12 D80
D85 D85EX-15 D85-21 D155
D155A-1 D155A-2 D155A-3 D155A-5
D155-6 D275 D355A-3 D375-5
BD2G      

5. Our warehouse:

6.Company information

HangZhou CZPT Machinery co., Ltd as your reliable Undercarriage parts supplier, offering full range of replacement parts suitable for all kinds of earthmoving machines which apply to mining, construction, agriculture etc. Like Excavator, Bulldozer, Loader, Backhoe, Scraper, Crusher and so on. The replacement parts that we supply including casting parts like idler, sprocket, top roller, track link, track roller, track shoes…, etc. and forged parts like forged idler, sprocket, top roller, track link, track roller, track shoes…, etc. 
 
Beneparts has a very strong sales team and firmly cooperated manufacturer with high-tech and focus on quality with more than 28 years experience.
 
Our advantages are 4 fold, our:
1.strong technical team, and we have the ability to formulate materials to meetthe specific needs of our customer’s projects.
2.Perfect quality monitoring system, and full range of advanced facilities, like Component analysis machine, Impact Machine, Tensile Strength machine etc.
3. Rich experience to do OEM/ODM business, we can develop items as per drawings and samples if you have specific requirement.
4. Efficient management, we can short delivery time and we have good after sale service which keep long term business cooperation with our customers.
 
Our commitment to you is always providing quick, convenient, effective customer service.
Look CZPT to meeting you!

Shipping Cost:

Estimated freight per unit.



To be negotiated
Type: Track Link
Application: Bulldozer
Certification: CE
Customization:
Available

|

Customized Request

chain

Advantages and disadvantages of roller chains

If you need to lift heavy objects, you should know how to use a roller chain. Its simple design and simplicity make it ideal for a wide range of applications. This article will discuss the advantages and different types of applications of roller chains. After reading this article, you will be able to choose the type of roller chain that best suits your specific needs. In the next section, we’ll discuss how to deal with it.

Put on

How to measure the wear of a roller chain? There are several methods available, but the most accurate is to use a wear gauge kit. The CZPT Chain Wear Indicator Kit measures chain elongation. Compliant with ANSI and British Standards, this tool is critical to the industry chain and can help you determine when replacement is required. Improper chain maintenance can cause equipment to slip or perform poorly, resulting in unnecessary downtime.
In addition to measuring the elongation of the roller chain, it is also possible to measure the pitch of the rollers. This measurement represents the ANSI #80 standard for roller chains. Vernier calipers can also be used to measure the pitch of chains. This tool is very useful and also acts as a bottle opener. You can even use it as a wear gauge. This way, you can determine if the roller chain needs to be replaced.
The wear resistance of a roller chain can extend its life by 10% or more. However, proper lubrication and general maintenance are essential to ensure the longest lifespan of your chain. The manufacturing process of a roller chain assembly also plays a crucial role in determining its service life. For longer life, you might consider purchasing a heavy-duty series roller chain with thicker side plates and longer pins. If you need greater working load capacity, you can also consider heavy-duty chains.
High-quality components are critical to the longevity of the roller chain. High-quality roller chain components require precise heat treatment processes. The use of proprietary steel allows the company to manufacture more durable drums. The pins are manufactured to tight tolerances and then undergo a centerless grinding process. This process removes any surface defects, resulting in a mirror finish on the pins. The uniformity of this surface finish also ensures that the load is evenly distributed on the pins, extending the life of the chain.

Material

Among the materials used in roller chains, carbon steel and alloy steel are the most common. However, stainless steel is used in food processing equipment and applications that require lubrication. Other materials used for roller chains include nylon and brass. For more information, see the USACE Material Specification Sheet for more information. You can also find information about the performance of a roller chain by its design. But before choosing one of these materials, consider its pros and cons.
Stainless steel is an excellent choice for roller chains. It is corrosion-resistant and can operate in extreme temperatures without cracking. Stainless steel is a non-magnetic material that can operate in a temperature range of -200 degrees to +700 degrees Fahrenheit. In addition to its corrosion-resistant properties, stainless steel can withstand a variety of environments and can be used in heavy-duty applications. The MEGA series is the strongest stainless steel roller chain in the world.

Application

As the name suggests, a roller chain has 5 basic components: pins, bushings, rollers, and pin chainplates. These components are precision engineered to ensure optimum performance and durability. Typical applications include drives and conveyor belts. The various components of the roller chain can be customized to specific needs. Read on to learn more about how these parts work together. This article presents the advantages and disadvantages of different types of roller chains and discusses their applications.
A roller chain is a form of chain drive consisting of short cylindrical rollers connected together by side links and gears called sprockets. While these devices are simple, they have some limitations. In most cases, sprockets must be designed with a maximum tensile load on one tooth to prevent premature chain failure. Therefore, these chains are less efficient than belt drives with higher inertia.
Roller chains are usually made of carbon or alloy steel, although stainless steel is often used where food processing machinery and lubrication are problematic. Sometimes, nylon and brass are used. The maximum running speed of the roller chain is important for some applications, but it also provides economic benefits for users and manufacturers. The maximum running speed of a roller chain is usually governed by a wear limit, which can vary by application.
The global roller chain market is expected to grow at a CAGR of over 5.4% over the next six years. The research report covers the competitive landscape and key factors influencing the market. The report also analyzes the growth potential, product utilization, and pricing models of key vendors. It also covers the SWOT analysis of the key players in the industry. The study provides a comprehensive market analysis of all these factors and more. It also highlights key players and their strategies and identifies the fastest growing regions for their products and services.

Maintain

Because rollers are exposed to a variety of environments, including snow, rain, and muddy roads, regular maintenance is required to prevent damage. Because they must encounter these elements frequently, frequent inspections are important to prevent rust and other damage. Also, avoid pouring acidic or alkaline cleaning products on the roller chain. Instead, use hot water with hand sanitizer or a disposable toothbrush to clean the rollers. Washing the chain directly with water has little effect.
For small rollers, the workload during the break-in period should not be too large, otherwise, it will cause overheating. The small drum should also be inspected frequently for any unusual appearance, which may indicate that the system is not functioning properly. In this case, the operation must be suspended. Failure to do so could result in serious injury or a facility fire. Additionally, a properly lubricated roller chain is essential to ensure long-term performance.
The surface of the roller is often rusted and scratched. Over time, these little scars can spread to the drive, damaging it. Also, the chain may not be properly spaced and timed. Therefore, it is very important to check regularly to ensure that the chain is in top condition. When the chain wears to 3% or more, the entire roller chain needs to be replaced. Failure to do so may damage the drive, the roller sprocket, or the entire chain.
Given the chain’s processing environment, lubrication is critical to its performance. If the chain is lubricated, it must be re-lubricated frequently. However, lubricated roller chains are susceptible to contamination, especially in the biomass industry. In these environments, airborne organic particles and debris from the biomass industry can contaminate lubricated roller chains. This is why maintenance is important for lubricating roller chains.
chain

Preloading

The benefits of preloading roller chains are well documented. In general, preloading eliminates the initial elongation of the roller chain, increasing its service life. Preloading is an effective way to achieve this, and a preloading chart can help illustrate the benefits of this process. Chains with little or no preload will stretch significantly during drive start, while chains will stretch rapidly as the surface hardness of the wear parts increases. Additionally, a properly preloaded chain has little or no elongation during the initial start-up of the drive, extending wear life.
Premium manufacturers apply the preload concept during their production phase, aligning all major components at the same time. This approach helps eliminate elongation issues that lead to rapid degradation of the roller chain. If this is not checked, the chain drive will stretch immediately over time. To avoid these problems, it is important to purchase a high-quality preloaded roller chain from a reputable source.
The heat treatment process is an effective way to prevent excessive wear of the roller chain. Heat treatment is a complex process that takes place in a factory during manufacturing. This process helps the rollers maintain high hardness and depth, preventing breakage. When buying a roller chain, make sure that the chain is heat treated and that the chain is manufactured to a high degree of precision. It also ensures that the product can be used for a long time.
In addition to performance benefits, preloading can also reduce initial elongation. A preloaded roller chain will exhibit near linear elongation, whereas a non-preloaded chain will experience rapid elongation. Therefore, they will reach the recommended 3% elongation earlier. Make sure the chain is properly lubricated. Also, consider how the chain is arranged. This is critical for optimal longevity.

China Hot selling 450e 450g Bulldozer Excavator Loader Backhoe Rubber Track Sprocket Roller Undercarriage Parts ID1354/37 Track Link Chain Shoe Assembly   roller chain componentsChina Hot selling 450e 450g Bulldozer Excavator Loader Backhoe Rubber Track Sprocket Roller Undercarriage Parts ID1354/37 Track Link Chain Shoe Assembly   roller chain components
editor by CX 2023-06-02