Tag Archives: roller chains quality

China Good quality Stainless Steel 10ass-3 Triplex Engineering Machinery Roller Chains and Bush Chain

Product Description

Chain No. Pitch

P
mm

Roller diameter

d1max
mm

Width between inner plates
b1min
mm
Pin diameter

d2max
mm

Pin length Inner plate depth
h2max
mm
Plate thickness
t/Tmax
mm
Transverse pitch
Pt
mm
Breaking load

Q
kN/lbf

Weight per meter
q
kg/m
Lmax
mm
Lcmax
mm
10ASS-3 15.875 10.16 9.40 5.08 57.-0-0. p. 211. Retrieved 17 May 2-0-0. p. 86. Retrieved 30 January 2015.
 Green 1996, pp. 2337-2361
 “ANSI G7 Standard Roller Chain – Tsubaki Europe”. Tsubaki Europe. Tsubakimoto Europe B.V. Retrieved 18 June 2.
External links
    Wikimedia Commons has media related to Roller chains.
The Complete Xihu (West Lake) Dis. to Chain
Categories: Chain drivesMechanical power transmissionMechanical power control

Why Choose Us

1.     Reliable Quality Assurance System
2.     Cutting-Edge Computer-Controlled CNC Machines
3.     Bespoke Solutions from Highly Experienced Specialists 
4.     Customization and OEM Available for Specific Application
5.     Extensive Inventory of Spare Parts and Accessories
6.     Well-Developed CHINAMFG Marketing Network 
7.     Efficient After-Sale Service System

 

 

Standard or Nonstandard: Standard
Application: Textile Machinery, Garment Machinery, Conveyer Equipment, Packaging Machinery, Electric Cars, Motorcycle, Food Machinery, Marine, Mining Equipment, Agricultural Machinery, Car
Surface Treatment: Polishing
Samples:
US$ 0/Meter
1 Meter(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

bush chain

What are the maintenance requirements for a bush chain?

Maintaining a bush chain is essential to ensure its optimal performance and longevity. Here are the key maintenance requirements for a bush chain:

1. Regular cleaning: Regularly clean the bush chain to remove dirt, debris, and contaminants that can cause abrasion and accelerated wear. Use a brush or compressed air to clean the chain thoroughly.

2. Lubrication: Proper lubrication is crucial for the smooth operation and reduced friction of a bush chain. Apply the recommended lubricant to all the chain components, including the pins, bushings, and rollers. Follow the manufacturer’s guidelines for the appropriate lubricant type and frequency of lubrication.

3. Tension adjustment: Check the tension of the bush chain regularly and adjust it if necessary. Proper tension ensures optimal performance and reduces the risk of premature wear or failure. Consult the manufacturer’s guidelines or expert advice for the correct tensioning procedure specific to your chain.

4. Inspection: Conduct regular inspections of the bush chain to identify any signs of wear, damage, or misalignment. Inspect the chain for elongation, broken or damaged components, and misalignment. Replace any worn or damaged parts promptly to prevent further issues.

5. Replace worn components: Over time, the components of a bush chain, such as pins, bushings, and rollers, may wear out and require replacement. Monitor the wear levels of these components and replace them when they reach the manufacturer’s recommended limits.

6. Environmental considerations: Consider the operating environment of the bush chain and take appropriate measures to protect it. In corrosive or harsh environments, use corrosion-resistant chain materials or coatings to prevent accelerated wear.

7. Training and documentation: Ensure that maintenance personnel are properly trained in bush chain maintenance procedures. Keep detailed records of maintenance activities, including lubrication schedules, tension adjustments, and component replacements.

By following these maintenance requirements, you can extend the lifespan of your bush chain and maintain its optimal performance. Regular maintenance and timely replacement of worn components will help prevent unexpected failures and costly downtime.

bush chain

How do you properly maintain and lubricate a bush chain?

Maintaining and lubricating a bush chain is essential to ensure its optimal performance and longevity. Here are the steps to properly maintain and lubricate a bush chain:

1. Regular Inspection: Perform regular visual inspections of the bush chain to check for any signs of wear, damage, or misalignment. Inspect the sprockets and bushings for wear patterns or excessive play. Replace any worn or damaged components.

2. Cleaning: Before lubricating the chain, clean it thoroughly to remove dirt, debris, and old lubricant. Use a suitable cleaning agent and a brush or compressed air to clean the chain effectively.

3. Lubrication: Apply the appropriate lubricant to the bush chain. The lubricant should be specifically designed for chain applications and provide adequate protection against wear and friction. Consider factors such as the operating conditions, temperature, and speed when selecting the lubricant.

4. Proper Lubricant Application: Apply the lubricant evenly to the bush chain while rotating the chain manually or running it at a slow speed. Ensure that all the chain components, including the bushings, pins, and rollers, are properly lubricated. Avoid over-lubrication as it can attract more dirt and debris.

5. Tensioning and Alignment: Maintain proper chain tension and alignment to prevent excessive wear and premature failure. Check the chain tension regularly and adjust it as needed. Ensure that the sprockets are aligned properly to avoid side loads and uneven wear.

6. Regular Maintenance: Establish a regular maintenance schedule for the bush chain. This includes periodic inspections, lubrication, and adjustments. Follow the manufacturer’s recommendations for maintenance intervals and procedures.

7. Environmental Considerations: Take into account the environmental conditions in which the bush chain operates. Extreme temperatures, humidity, or corrosive atmospheres may require special lubricants or additional protective measures.

By following these maintenance and lubrication practices, you can ensure the smooth operation, extended service life, and optimal performance of your bush chain.

bush chain

How do you select the right bush chain for your application?

Choosing the right bush chain for your application is essential to ensure optimal performance and longevity. Here are some factors to consider when selecting a bush chain:

1. Load Capacity: Evaluate the maximum load that the chain will need to transmit. Consider factors such as weight, acceleration, and shock loads. Choose a bush chain with a load capacity that exceeds the anticipated load to ensure reliable operation.

2. Speed: Determine the operating speed of the chain. Higher speeds may require chains with specialized designs to minimize wear, reduce friction, and maintain accurate timing.

3. Environmental Conditions: Assess the environmental conditions in which the chain will operate. Consider factors such as temperature, humidity, dust, chemicals, and exposure to corrosive substances. Select a bush chain that is designed to withstand the specific conditions of your application.

4. Size and Configuration: Determine the required chain size based on the available space and the dimensions of the sprockets or pulleys. Consider the pitch, width, and overall dimensions of the chain. Additionally, assess whether a standard or custom configuration is needed to meet the application requirements.

5. Lubrication Requirements: Determine the lubrication method and frequency required for the chain. Some bush chains are self-lubricating, while others may require regular lubrication. Consider the availability of lubrication systems and the maintenance requirements of the chain.

6. Reliability and Durability: Assess the expected operational lifespan and the reliability requirements of your application. Look for bush chains from reputable manufacturers known for producing high-quality, durable products. Consider factors such as wear resistance, fatigue strength, and overall reliability.

7. Cost: Evaluate the cost-effectiveness of the bush chain, considering both the initial investment and long-term maintenance costs. Balance the performance requirements with the available budget.

Consult with a knowledgeable supplier or engineer to ensure you select the right bush chain that meets your specific application requirements. They can provide guidance based on their expertise and help you choose a chain that offers optimal performance and durability.

China Good quality Stainless Steel 10ass-3 Triplex Engineering Machinery Roller Chains and Bush Chain  China Good quality Stainless Steel 10ass-3 Triplex Engineering Machinery Roller Chains and Bush Chain
editor by CX 2023-11-06

China high quality High Strength and Wear Resistance Short Pitch Precision 80h-3 Heavy Duty Series Triplex Transmission Roller Chains and Bush Chains

Product Description

Heavy Duty Series Triplex Roller Chains & Bush Chains

 

ISO/ANSI

Chain No.
 

Pitch
P
mm
 
Roller diameter

d1max
mm
 

Width between inner plates
b1min
mm
 
Pin diameter

d2max
mm
 

Pin length Inner plate depth
h2max
mm
 
Plate thickness
Tmax
mm
 
Transverse pitch
Pt
mm
 
Tensile strength
Qmin
kN/lbf
 
Average tensile strength
Q0
kN
 
Weight per meter
q kg/m
 
Lmax
mm
Lcmax
mm
80H-3 25.400 15.88 15.75 7.92 101.4 102.9 24.00 4.00 32.59 170.1/38659 203.5 9.42

 

ROLLER CHAIN

Roller chain or bush roller chain is the type of chain drive most commonly used for transmission of mechanical power on many kinds of domestic, industrial and agricultural machinery, including conveyors, wire- and tube-drawing machines, printing presses, cars, motorcycles, and bicycles. It consists of a series of short cylindrical rollers held together by side links. It is driven by a toothed wheel called a sprocket. It is a simple, reliable, and efficient means of power transmission.

CONSTRUCTION OF THE CHAIN

Two different sizes of roller chain, showing construction.
There are 2 types of links alternating in the bush roller chain. The first type is inner links, having 2 inner plates held together by 2 sleeves or bushings CHINAMFG which rotate 2 rollers. Inner links alternate with the second type, the outer links, consisting of 2 outer plates held together by pins passing through the bushings of the inner links. The “bushingless” roller chain is similar in operation though not in construction; instead of separate bushings or sleeves holding the inner plates together, the plate has a tube stamped into it protruding from the hole which serves the same purpose. This has the advantage of removing 1 step in assembly of the chain.

The roller chain design reduces friction compared to simpler designs, resulting in higher efficiency and less wear. The original power transmission chain varieties lacked rollers and bushings, with both the inner and outer plates held by pins which directly contacted the sprocket teeth; however this configuration exhibited extremely rapid wear of both the sprocket teeth, and the plates where they pivoted on the pins. This problem was partially solved by the development of bushed chains, with the pins holding the outer plates passing through bushings or sleeves connecting the inner plates. This distributed the wear over a greater area; however the teeth of the sprockets still wore more rapidly than is desirable, from the sliding friction against the bushings. The addition of rollers surrounding the bushing sleeves of the chain and provided rolling contact with the teeth of the sprockets resulting in excellent resistance to wear of both sprockets and chain as well. There is even very low friction, as long as the chain is sufficiently lubricated. Continuous, clean, lubrication of roller chains is of primary importance for efficient operation as well as correct tensioning.

LUBRICATION

Many driving chains (for example, in factory equipment, or driving a camshaft inside an internal combustion engine) operate in clean environments, and thus the wearing surfaces (that is, the pins and bushings) are safe from precipitation and airborne grit, many even in a sealed environment such as an oil bath. Some roller chains are designed to have o-rings built into the space between the outside link plate and the inside roller link plates. Chain manufacturers began to include this feature in 1971 after the application was invented by Joseph Montano while working for Whitney Chain of Hartford, Connecticut. O-rings were included as a way to improve lubrication to the links of power transmission chains, a service that is vitally important to extending their working life. These rubber fixtures form a barrier that holds factory applied lubricating grease inside the pin and bushing wear areas. Further, the rubber o-rings prevent dirt and other contaminants from entering inside the chain linkages, where such particles would otherwise cause significant wear.[citation needed]

There are also many chains that have to operate in dirty conditions, and for size or operational reasons cannot be sealed. Examples include chains on farm equipment, bicycles, and chain saws. These chains will necessarily have relatively high rates of wear, particularly when the operators are prepared to accept more friction, less efficiency, more noise and more frequent replacement as they neglect lubrication and adjustment.

Many oil-based lubricants attract dirt and other particles, eventually forming an CHINAMFG paste that will compound wear on chains. This problem can be circumvented by use of a “dry” PTFE spray, which forms a solid film after application and repels both particles and moisture.

VARIANTS DESIGN

Layout of a roller chain: 1. Outer plate, 2. Inner plate, 3. Pin, 4. Bushing, 5. Roller
If the chain is not being used for a high wear application (for instance if it is just transmitting motion from a hand-operated lever to a control shaft on a machine, or a sliding door on an oven), then 1 of the simpler types of chain may still be used. Conversely, where extra strength but the smooth drive of a smaller pitch is required, the chain may be “siamesed”; instead of just 2 rows of plates on the outer sides of the chain, there may be 3 (“duplex”), 4 (“triplex”), or more rows of plates running parallel, with bushings and rollers between each adjacent pair, and the same number of rows of teeth running in parallel on the sprockets to match. Timing chains on automotive engines, for example, typically have multiple rows of plates called strands.

Roller chain is made in several sizes, the most common American National Standards Institute (ANSI) standards being 40, 50, 60, and 80. The first digit(s) indicate the pitch of the chain in eighths of an inch, with the last digit being 0 for standard chain, 1 for lightweight chain, and 5 for bushed chain with no rollers. Thus, a chain with half-inch pitch would be a #40 while a #160 sprocket would have teeth spaced 2 inches apart, etc. Metric pitches are expressed in sixteenths of an inch; thus a metric #8 chain (08B-1) would be equivalent to an ANSI #40. Most roller chain is made from plain carbon or alloy steel, but stainless steel is used in food processing machinery or other places where lubrication is a problem, and nylon or brass are occasionally seen for the same reason.

Roller chain is ordinarily hooked up using a master link (also known as a connecting link), which typically has 1 pin held by a horseshoe clip rather than friction fit, allowing it to be inserted or removed with simple tools. Chain with a removable link or pin is also known as cottered chain, which allows the length of the chain to be adjusted. Half links (also known as offsets) are available and are used to increase the length of the chain by a single roller. Riveted roller chain has the master link (also known as a connecting link) “riveted” or mashed on the ends. These pins are made to be durable and are not removable.

USE

An example of 2 ‘ghost’ sprockets tensioning a triplex roller chain system
Roller chains are used in low- to mid-speed drives at around 600 to 800 feet per minute; however, at higher speeds, around 2,000 to 3,000 feet per minute, V-belts are normally used due to wear and noise issues.
A bicycle chain is a form of roller chain. Bicycle chains may have a master link, or may require a chain tool for removal and installation. A similar but larger and thus stronger chain is used on most motorcycles although it is sometimes replaced by either a toothed belt or a shaft drive, which offer lower noise level and fewer maintenance requirements.
The great majority of automobile engines use roller chains to drive the camshaft(s). Very high performance engines often use gear drive, and starting in the early 1960s toothed belts were used by some manufacturers.
Chains are also used in forklifts using hydraulic rams as a pulley to raise and lower the carriage; however, these chains are not considered roller chains, but are classified as lift or leaf chains.
Chainsaw cutting chains superficially resemble roller chains but are more closely related to leaf chains. They are driven by projecting drive links which also serve to locate the chain CHINAMFG the bar.

Sea Harrier FA.2 ZA195 front (cold) vector thrust nozzle – the nozzle is rotated by a chain drive from an air motor
A perhaps unusual use of a pair of motorcycle chains is in the Harrier Jump Jet, where a chain drive from an air motor is used to rotate the movable engine nozzles, allowing them to be pointed downwards for hovering flight, or to the rear for normal CHINAMFG flight, a system known as Thrust vectoring.

WEAR

 

The effect of wear on a roller chain is to increase the pitch (spacing of the links), causing the chain to grow longer. Note that this is due to wear at the pivoting pins and bushes, not from actual stretching of the metal (as does happen to some flexible steel components such as the hand-brake cable of a motor vehicle).

With modern chains it is unusual for a chain (other than that of a bicycle) to wear until it breaks, since a worn chain leads to the rapid onset of wear on the teeth of the sprockets, with ultimate failure being the loss of all the teeth on the sprocket. The sprockets (in particular the smaller of the two) suffer a grinding motion that puts a characteristic hook shape into the driven face of the teeth. (This effect is made worse by a chain improperly tensioned, but is unavoidable no matter what care is taken). The worn teeth (and chain) no longer provides smooth transmission of power and this may become evident from the noise, the vibration or (in car engines using a timing chain) the variation in ignition timing seen with a timing light. Both sprockets and chain should be replaced in these cases, since a new chain on worn sprockets will not last long. However, in less severe cases it may be possible to save the larger of the 2 sprockets, since it is always the smaller 1 that suffers the most wear. Only in very light-weight applications such as a bicycle, or in extreme cases of improper tension, will the chain normally jump off the sprockets.

The lengthening due to wear of a chain is calculated by the following formula:

M = the length of a number of links measured

S = the number of links measured

P = Pitch

In industry, it is usual to monitor the movement of the chain tensioner (whether manual or automatic) or the exact length of a drive chain (one rule of thumb is to replace a roller chain which has elongated 3% on an adjustable drive or 1.5% on a fixed-center drive). A simpler method, particularly suitable for the cycle or motorcycle user, is to attempt to pull the chain away from the larger of the 2 sprockets, whilst ensuring the chain is taut. Any significant movement (e.g. making it possible to see through a gap) probably indicates a chain worn up to and beyond the limit. Sprocket damage will result if the problem is ignored. Sprocket wear cancels this effect, and may mask chain wear.

CHAIN STRENGTH

The most common measure of roller chain’s strength is tensile strength. Tensile strength represents how much load a chain can withstand under a one-time load before breaking. Just as important as tensile strength is a chain’s fatigue strength. The critical factors in a chain’s fatigue strength is the quality of steel used to manufacture the chain, the heat treatment of the chain components, the quality of the pitch hole fabrication of the linkplates, and the type of shot plus the intensity of shot peen coverage on the linkplates. Other factors can include the thickness of the linkplates and the design (contour) of the linkplates. The rule of thumb for roller chain operating on a continuous drive is for the chain load to not exceed a mere 1/6 or 1/9 of the chain’s tensile strength, depending on the type of master links used (press-fit vs. slip-fit)[citation needed]. Roller chains operating on a continuous drive beyond these thresholds can and typically do fail prematurely via linkplate fatigue failure.

The standard minimum ultimate strength of the ANSI 29.1 steel chain is 12,500 x (pitch, in inches)2. X-ring and O-Ring chains greatly decrease wear by means of internal lubricants, increasing chain life. The internal lubrication is inserted by means of a vacuum when riveting the chain together.

CHAIN STHangZhouRDS

Standards organizations (such as ANSI and ISO) maintain standards for design, dimensions, and interchangeability of transmission chains. For example, the following Table shows data from ANSI standard B29.1-2011 (Precision Power Transmission Roller Chains, Attachments, and Sprockets) developed by the American Society of Mechanical Engineers (ASME). See the references[8][9][10] for additional information.

ASME/ANSI B29.1-2011 Roller Chain Standard SizesSizePitchMaximum Roller DiameterMinimum Ultimate Tensile StrengthMeasuring Load25

ASME/ANSI B29.1-2011 Roller Chain Standard Sizes
Size Pitch Maximum Roller Diameter Minimum Ultimate Tensile Strength Measuring Load
25 0.250 in (6.35 mm) 0.130 in (3.30 mm) 780 lb (350 kg) 18 lb (8.2 kg)
35 0.375 in (9.53 mm) 0.200 in (5.08 mm) 1,760 lb (800 kg) 18 lb (8.2 kg)
41 0.500 in (12.70 mm) 0.306 in (7.77 mm) 1,500 lb (680 kg) 18 lb (8.2 kg)
40 0.500 in (12.70 mm) 0.312 in (7.92 mm) 3,125 lb (1,417 kg) 31 lb (14 kg)
50 0.625 in (15.88 mm) 0.400 in (10.16 mm) 4,880 lb (2,210 kg) 49 lb (22 kg)
60 0.750 in (19.05 mm) 0.469 in (11.91 mm) 7,030 lb (3,190 kg) 70 lb (32 kg)
80 1.000 in (25.40 mm) 0.625 in (15.88 mm) 12,500 lb (5,700 kg) 125 lb (57 kg)
100 1.250 in (31.75 mm) 0.750 in (19.05 mm) 19,531 lb (8,859 kg) 195 lb (88 kg)
120 1.500 in (38.10 mm) 0.875 in (22.23 mm) 28,125 lb (12,757 kg) 281 lb (127 kg)
140 1.750 in (44.45 mm) 1.000 in (25.40 mm) 38,280 lb (17,360 kg) 383 lb (174 kg)
160 2.000 in (50.80 mm) 1.125 in (28.58 mm) 50,000 lb (23,000 kg) 500 lb (230 kg)
180 2.250 in (57.15 mm) 1.460 in (37.08 mm) 63,280 lb (28,700 kg) 633 lb (287 kg)
200 2.500 in (63.50 mm) 1.562 in (39.67 mm) 78,175 lb (35,460 kg) 781 lb (354 kg)
240 3.000 in (76.20 mm) 1.875 in (47.63 mm) 112,500 lb (51,000 kg) 1,000 lb (450 kg

For mnemonic purposes, below is another presentation of key dimensions from the same standard, expressed in fractions of an inch (which was part of the thinking behind the choice of preferred numbers in the ANSI standard):

Pitch (inches) Pitch expressed
in eighths
ANSI standard
chain number
Width (inches)
14 28 25 18
38 38 35 316
12 48 41 14
12 48 40 516
58 58 50 38
34 68 60 12
1 88 80 58

Notes:
1. The pitch is the distance between roller centers. The width is the distance between the link plates (i.e. slightly more than the roller width to allow for clearance).
2. The right-hand digit of the standard denotes 0 = normal chain, 1 = lightweight chain, 5 = rollerless bushing chain.
3. The left-hand digit denotes the number of eighths of an inch that make up the pitch.
4. An “H” following the standard number denotes heavyweight chain. A hyphenated number following the standard number denotes double-strand (2), triple-strand (3), and so on. Thus 60H-3 denotes number 60 heavyweight triple-strand chain.
 A typical bicycle chain (for derailleur gears) uses narrow 1⁄2-inch-pitch chain. The width of the chain is variable, and does not affect the load capacity. The more sprockets at the rear wheel (historically 3-6, nowadays 7-12 sprockets), the narrower the chain. Chains are sold according to the number of speeds they are designed to work with, for example, “10 speed chain”. Hub gear or single speed bicycles use 1/2″ x 1/8″ chains, where 1/8″ refers to the maximum thickness of a sprocket that can be used with the chain.

Typically chains with parallel shaped links have an even number of links, with each narrow link followed by a broad one. Chains built up with a uniform type of link, narrow at 1 and broad at the other end, can be made with an odd number of links, which can be an advantage to adapt to a special chainwheel-distance; on the other side such a chain tends to be not so strong.

Roller chains made using ISO standard are sometimes called as isochains.

 

WHY CHOOSE US 

1. Reliable Quality Assurance System
2. Cutting-Edge Computer-Controlled CNC Machines
3. Bespoke Solutions from Highly Experienced Specialists
4. Customization and OEM Available for Specific Application
5. Extensive Inventory of Spare Parts and Accessories
6. Well-Developed CHINAMFG Marketing Network
7. Efficient After-Sale Service System

 

The 219 sets of advanced automatic production equipment provide guarantees for high product quality. The 167 engineers and technicians with senior professional titles can design and develop products to meet the exact demands of customers, and OEM customizations are also available with us. Our sound global service network can provide customers with timely after-sales technical services.

We are not just a manufacturer and supplier, but also an industry consultant. We work pro-actively with you to offer expert advice and product recommendations in order to end up with a most cost effective product available for your specific application. The clients we serve CHINAMFG range from end users to distributors and OEMs. Our OEM replacements can be substituted wherever necessary and suitable for both repair and new assemblies.

Standard or Nonstandard: Standard
Application: Textile Machinery, Garment Machinery, Conveyer Equipment, Packaging Machinery, Electric Cars, Motorcycle, Food Machinery, Marine, Mining Equipment, Agricultural Machinery, Car, Food and Beverage Industry, Motorcycle Parts
Surface Treatment: Polishing
Structure: Roller Chain
Material: Alloy
Type: Short Pitch Chain
Samples:
US$ 0/Meter
1 Meter(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

bush chain

What are the factors to consider when selecting a bush chain material?

When selecting a bush chain material, several factors should be considered to ensure optimal performance and longevity in specific applications. These factors include:

1. Load capacity: The material should have sufficient strength and hardness to withstand the expected load without deformation or failure. Higher load capacities typically require materials with greater tensile strength and wear resistance.

2. Wear resistance: The material should have good wear resistance to withstand the friction and abrasive forces experienced during chain operation. This is particularly important in applications where the chain may come into contact with harsh or abrasive environments.

3. Corrosion resistance: Depending on the operating environment, the chain material should exhibit resistance to corrosion caused by moisture, chemicals, or other corrosive substances. Corrosion-resistant materials, such as stainless steel or certain alloys, are commonly used in applications where exposure to corrosive elements is expected.

4. Temperature resistance: The material should be capable of withstanding the temperature range experienced in the application. High-temperature applications may require materials with heat-resistant properties to prevent deformation or loss of strength.

5. Fatigue strength: The material should have good fatigue strength to withstand repeated stress cycles without experiencing fatigue failure. This is particularly important in applications where the chain undergoes frequent start-stop or reversing movements.

6. Compatibility with lubrication: The chain material should be compatible with the lubricant used in the application. Some materials may require specific lubrication types or may be self-lubricating, while others may have limitations regarding lubrication compatibility.

7. Cost-effectiveness: Consideration should also be given to the cost-effectiveness of the material. Balancing performance requirements with cost considerations is crucial to ensure the best value for the specific application.

By carefully evaluating these factors and considering the specific requirements of the application, the most suitable material for the bush chain can be selected. Common materials used for bush chains include carbon steel, stainless steel, heat-treated alloys, and specialty polymers.

bush chain

How does a bush chain handle different speeds and loads?

Bush chains are designed to handle various speeds and loads in industrial applications. Here’s how they accommodate different operating conditions:

1. Speed: Bush chains are engineered to operate effectively at different speeds, ranging from low-speed to high-speed applications. The design and materials used in the chain construction ensure smooth and reliable performance even at high rotational speeds. The chain’s pitch, diameter, and strength are factors considered during the selection process to match the required speed.

2. Load capacity: Bush chains are designed to withstand different load capacities, including both static and dynamic loads. The chain’s strength, determined by factors such as the material used, chain size, and construction, is critical in handling different loads. The appropriate chain size and strength must be selected to ensure that the chain can safely and reliably transmit the required loads without deformation or failure.

3. Lubrication: Proper lubrication is essential for the smooth operation of a bush chain under varying speeds and loads. Lubrication reduces friction and wear between the chain components, allowing the chain to operate efficiently. Depending on the application, lubrication can be achieved through various methods, including manual lubrication, automatic lubrication systems, or self-lubricating bush chains.

4. Material selection: The choice of materials for the bush chain components plays a crucial role in handling different speeds and loads. High-strength materials, such as hardened steel or alloys, are commonly used for the chain plates, pins, and bushings to ensure the necessary strength and durability. Additionally, specialized coatings or surface treatments may be applied to enhance wear resistance and reduce friction.

5. Design considerations: The design of the bush chain, including factors such as the number of links, link shape, and articulation, is optimized to distribute the load evenly and promote smooth engagement with the sprockets. These design elements help minimize stress concentration points and ensure efficient power transmission.

By considering factors such as speed, load capacity, lubrication, material selection, and design, bush chains are able to handle a wide range of operating conditions. Proper selection and maintenance of the bush chain are essential to ensure optimal performance, longevity, and safety in various industrial applications.

bush chain

What are the different types of bush chains available?

There are several types of bush chains available, each designed to meet specific application requirements. Here are some common types:

1. Standard Bush Chains: These chains have a simple construction with bushings and rollers. They are commonly used in general industrial applications that require moderate load capacity and speed.

2. Heavy-Duty Bush Chains: These chains are designed for applications that involve high loads, such as heavy machinery or equipment. They have a robust construction with thicker plates and larger diameter bushings to withstand the increased demands.

3. Extended Pitch Bush Chains: These chains have a larger pitch than standard chains, providing more space between each link. They are often used in applications that require conveying large or irregularly shaped objects, such as in material handling or packaging industries.

4. Double-Pitch Bush Chains: These chains have double the pitch of standard chains, allowing for longer spans between sprockets. They are commonly used in applications that require longer conveying distances or lower-speed operation.

5. Stainless Steel Bush Chains: These chains are made from stainless steel material, offering excellent corrosion resistance. They are suitable for applications in corrosive environments or industries with strict hygiene requirements, such as food processing or pharmaceutical manufacturing.

6. Self-Lubricating Bush Chains: These chains incorporate special materials or coatings that provide self-lubrication properties. They eliminate the need for external lubrication and reduce maintenance requirements. Self-lubricating bush chains are ideal for applications where regular lubrication is challenging or impractical.

7. Specialty Bush Chains: There are also specialty bush chains available for specific applications. These may include high-temperature chains, flame-resistant chains, or chains with specialized coatings for specific industries or environments.

When selecting a bush chain, consider the specific requirements of your application, such as load capacity, speed, environmental conditions, and maintenance needs. Consult with a supplier or engineer to determine the most suitable type of bush chain for your application.

China high quality High Strength and Wear Resistance Short Pitch Precision 80h-3 Heavy Duty Series Triplex Transmission Roller Chains and Bush Chains  China high quality High Strength and Wear Resistance Short Pitch Precision 80h-3 Heavy Duty Series Triplex Transmission Roller Chains and Bush Chains
editor by CX 2023-10-07

China high quality Gearbox Belt Transmission Parts Engineering and Construction Machinery 50-2 a Series Short Pitch Precision Duplex Roller Chains and Bush Chains

Product Description

A Series Short Pitch Precision Duplex Roller Chains & Bush Chains

ISO/ANSI/ DIN
Chain No.
Chain No. Pitch

P
mm

Roller diameter

d1max
mm

Width between inner plates
b1min
mm
Pin diameter

d2max
mm

Pin length Inner plate depth
h2max
mm
Plate thickness

Tmax
mm

Transverse                     Pt 
mm
Tensile strength

Qmin
kN/lbf

Average tensile strength
Q0
kN
Weight per meter
q  
kg/m
Lmax
mm
Lcmax
mm
50-2 10A-2 15.875 10.16 9.40 5.08 38.9 40.4 15.09 2.03 18.11 44.40/10091 62.6 2.00

*Bush chain: d1 in the table indicates the external diameter of the bush

ROLLER CHAIN

Roller chain or bush roller chain is the type of chain drive most commonly used for transmission of mechanical power on many kinds of domestic, industrial and agricultural machinery, including conveyors, wire- and tube-drawing machines, printing presses, cars, motorcycles, and bicycles. It consists of a series of short cylindrical rollers held together by side links. It is driven by a toothed wheel called a sprocket. It is a simple, reliable, and efficient means of power transmission.

CONSTRUCTION OF THE CHAIN

Two different sizes of roller chain, showing construction.
There are 2 types of links alternating in the bush roller chain. The first type is inner links, having 2 inner plates held together by 2 sleeves or bushings CZPT which rotate 2 rollers. Inner links alternate with the second type, the outer links, consisting of 2 outer plates held together by pins passing through the bushings of the inner links. The “bushingless” roller chain is similar in operation though not in construction; instead of separate bushings or sleeves holding the inner plates together, the plate has a tube stamped into it protruding from the hole which serves the same purpose. This has the advantage of removing 1 step in assembly of the chain.

The roller chain design reduces friction compared to simpler designs, resulting in higher efficiency and less wear. The original power transmission chain varieties lacked rollers and bushings, with both the inner and outer plates held by pins which directly contacted the sprocket teeth; however this configuration exhibited extremely rapid wear of both the sprocket teeth, and the plates where they pivoted on the pins. This problem was partially solved by the development of bushed chains, with the pins holding the outer plates passing through bushings or sleeves connecting the inner plates. This distributed the wear over a greater area; however the teeth of the sprockets still wore more rapidly than is desirable, from the sliding friction against the bushings. The addition of rollers surrounding the bushing sleeves of the chain and provided rolling contact with the teeth of the sprockets resulting in excellent resistance to wear of both sprockets and chain as well. There is even very low friction, as long as the chain is sufficiently lubricated. Continuous, clean, lubrication of roller chains is of primary importance for efficient operation as well as correct tensioning.

LUBRICATION

Many driving chains (for example, in factory equipment, or driving a camshaft inside an internal combustion engine) operate in clean environments, and thus the wearing surfaces (that is, the pins and bushings) are safe from precipitation and airborne grit, many even in a sealed environment such as an oil bath. Some roller chains are designed to have o-rings built into the space between the outside link plate and the inside roller link plates. Chain manufacturers began to include this feature in 1971 after the application was invented by Joseph Montano while working for Whitney Chain of Hartford, Connecticut. O-rings were included as a way to improve lubrication to the links of power transmission chains, a service that is vitally important to extending their working life. These rubber fixtures form a barrier that holds factory applied lubricating grease inside the pin and bushing wear areas. Further, the rubber o-rings prevent dirt and other contaminants from entering inside the chain linkages, where such particles would otherwise cause significant wear.[citation needed]

There are also many chains that have to operate in dirty conditions, and for size or operational reasons cannot be sealed. Examples include chains on farm equipment, bicycles, and chain saws. These chains will necessarily have relatively high rates of wear, particularly when the operators are prepared to accept more friction, less efficiency, more noise and more frequent replacement as they neglect lubrication and adjustment.

Many oil-based lubricants attract dirt and other particles, eventually forming an CZPT paste that will compound wear on chains. This problem can be circumvented by use of a “dry” PTFE spray, which forms a solid film after application and repels both particles and moisture.

VARIANTS DESIGN

Layout of a roller chain: 1. Outer plate, 2. Inner plate, 3. Pin, 4. Bushing, 5. Roller
If the chain is not being used for a high wear application (for instance if it is just transmitting motion from a hand-operated lever to a control shaft on a machine, or a sliding door on an oven), then 1 of the simpler types of chain may still be used. Conversely, where extra strength but the smooth drive of a smaller pitch is required, the chain may be “siamesed”; instead of just 2 rows of plates on the outer sides of the chain, there may be 3 (“duplex”), 4 (“triplex”), or more rows of plates running parallel, with bushings and rollers between each adjacent pair, and the same number of rows of teeth running in parallel on the sprockets to match. Timing chains on automotive engines, for example, typically have multiple rows of plates called strands.

Roller chain is made in several sizes, the most common American National Standards Institute (ANSI) standards being 40, 50, 60, and 80. The first digit(s) indicate the pitch of the chain in eighths of an inch, with the last digit being 0 for standard chain, 1 for lightweight chain, and 5 for bushed chain with no rollers. Thus, a chain with half-inch pitch would be a #40 while a #160 sprocket would have teeth spaced 2 inches apart, etc. Metric pitches are expressed in sixteenths of an inch; thus a metric #8 chain (08B-1) would be equivalent to an ANSI #40. Most roller chain is made from plain carbon or alloy steel, but stainless steel is used in food processing machinery or other places where lubrication is a problem, and nylon or brass are occasionally seen for the same reason.

Roller chain is ordinarily hooked up using a master link (also known as a connecting link), which typically has 1 pin held by a horseshoe clip rather than friction fit, allowing it to be inserted or removed with simple tools. Chain with a removable link or pin is also known as cottered chain, which allows the length of the chain to be adjusted. Half links (also known as offsets) are available and are used to increase the length of the chain by a single roller. Riveted roller chain has the master link (also known as a connecting link) “riveted” or mashed on the ends. These pins are made to be durable and are not removable.

USE

An example of 2 ‘ghost’ sprockets tensioning a triplex roller chain system
Roller chains are used in low- to mid-speed drives at around 600 to 800 feet per minute; however, at higher speeds, around 2,000 to 3,000 feet per minute, V-belts are normally used due to wear and noise issues.
A bicycle chain is a form of roller chain. Bicycle chains may have a master link, or may require a chain tool for removal and installation. A similar but larger and thus stronger chain is used on most motorcycles although it is sometimes replaced by either a toothed belt or a shaft drive, which offer lower noise level and fewer maintenance requirements.
The great majority of automobile engines use roller chains to drive the camshaft(s). Very high performance engines often use gear drive, and starting in the early 1960s toothed belts were used by some manufacturers.
Chains are also used in forklifts using hydraulic rams as a pulley to raise and lower the carriage; however, these chains are not considered roller chains, but are classified as lift or leaf chains.
Chainsaw cutting chains superficially resemble roller chains but are more closely related to leaf chains. They are driven by projecting drive links which also serve to locate the chain CZPT the bar.

Sea Harrier FA.2 ZA195 front (cold) vector thrust nozzle – the nozzle is rotated by a chain drive from an air motor
A perhaps unusual use of a pair of motorcycle chains is in the Harrier Jump Jet, where a chain drive from an air motor is used to rotate the movable engine nozzles, allowing them to be pointed downwards for hovering flight, or to the rear for normal CZPT flight, a system known as Thrust vectoring.

WEAR

 

The effect of wear on a roller chain is to increase the pitch (spacing of the links), causing the chain to grow longer. Note that this is due to wear at the pivoting pins and bushes, not from actual stretching of the metal (as does happen to some flexible steel components such as the hand-brake cable of a motor vehicle).

With modern chains it is unusual for a chain (other than that of a bicycle) to wear until it breaks, since a worn chain leads to the rapid onset of wear on the teeth of the sprockets, with ultimate failure being the loss of all the teeth on the sprocket. The sprockets (in particular the smaller of the two) suffer a grinding motion that puts a characteristic hook shape into the driven face of the teeth. (This effect is made worse by a chain improperly tensioned, but is unavoidable no matter what care is taken). The worn teeth (and chain) no longer provides smooth transmission of power and this may become evident from the noise, the vibration or (in car engines using a timing chain) the variation in ignition timing seen with a timing light. Both sprockets and chain should be replaced in these cases, since a new chain on worn sprockets will not last long. However, in less severe cases it may be possible to save the larger of the 2 sprockets, since it is always the smaller 1 that suffers the most wear. Only in very light-weight applications such as a bicycle, or in extreme cases of improper tension, will the chain normally jump off the sprockets.

The lengthening due to wear of a chain is calculated by the following formula:

M = the length of a number of links measured

S = the number of links measured

P = Pitch

In industry, it is usual to monitor the movement of the chain tensioner (whether manual or automatic) or the exact length of a drive chain (one rule of thumb is to replace a roller chain which has elongated 3% on an adjustable drive or 1.5% on a fixed-center drive). A simpler method, particularly suitable for the cycle or motorcycle user, is to attempt to pull the chain away from the larger of the 2 sprockets, whilst ensuring the chain is taut. Any significant movement (e.g. making it possible to see through a gap) probably indicates a chain worn up to and beyond the limit. Sprocket damage will result if the problem is ignored. Sprocket wear cancels this effect, and may mask chain wear.

CHAIN STRENGTH

The most common measure of roller chain’s strength is tensile strength. Tensile strength represents how much load a chain can withstand under a one-time load before breaking. Just as important as tensile strength is a chain’s fatigue strength. The critical factors in a chain’s fatigue strength is the quality of steel used to manufacture the chain, the heat treatment of the chain components, the quality of the pitch hole fabrication of the linkplates, and the type of shot plus the intensity of shot peen coverage on the linkplates. Other factors can include the thickness of the linkplates and the design (contour) of the linkplates. The rule of thumb for roller chain operating on a continuous drive is for the chain load to not exceed a mere 1/6 or 1/9 of the chain’s tensile strength, depending on the type of master links used (press-fit vs. slip-fit)[citation needed]. Roller chains operating on a continuous drive beyond these thresholds can and typically do fail prematurely via linkplate fatigue failure.

The standard minimum ultimate strength of the ANSI 29.1 steel chain is 12,500 x (pitch, in inches)2. X-ring and O-Ring chains greatly decrease wear by means of internal lubricants, increasing chain life. The internal lubrication is inserted by means of a vacuum when riveting the chain together.

CHAIN STHangZhouRDS

Standards organizations (such as ANSI and ISO) maintain standards for design, dimensions, and interchangeability of transmission chains. For example, the following Table shows data from ANSI standard B29.1-2011 (Precision Power Transmission Roller Chains, Attachments, and Sprockets) developed by the American Society of Mechanical Engineers (ASME). See the references[8][9][10] for additional information.

ASME/ANSI B29.1-2011 Roller Chain Standard SizesSizePitchMaximum Roller DiameterMinimum Ultimate Tensile StrengthMeasuring Load25

ASME/ANSI B29.1-2011 Roller Chain Standard Sizes
Size Pitch Maximum Roller Diameter Minimum Ultimate Tensile Strength Measuring Load
25 0.250 in (6.35 mm) 0.130 in (3.30 mm) 780 lb (350 kg) 18 lb (8.2 kg)
35 0.375 in (9.53 mm) 0.200 in (5.08 mm) 1,760 lb (800 kg) 18 lb (8.2 kg)
41 0.500 in (12.70 mm) 0.306 in (7.77 mm) 1,500 lb (680 kg) 18 lb (8.2 kg)
40 0.500 in (12.70 mm) 0.312 in (7.92 mm) 3,125 lb (1,417 kg) 31 lb (14 kg)
50 0.625 in (15.88 mm) 0.400 in (10.16 mm) 4,880 lb (2,210 kg) 49 lb (22 kg)
60 0.750 in (19.05 mm) 0.469 in (11.91 mm) 7,030 lb (3,190 kg) 70 lb (32 kg)
80 1.000 in (25.40 mm) 0.625 in (15.88 mm) 12,500 lb (5,700 kg) 125 lb (57 kg)
100 1.250 in (31.75 mm) 0.750 in (19.05 mm) 19,531 lb (8,859 kg) 195 lb (88 kg)
120 1.500 in (38.10 mm) 0.875 in (22.23 mm) 28,125 lb (12,757 kg) 281 lb (127 kg)
140 1.750 in (44.45 mm) 1.000 in (25.40 mm) 38,280 lb (17,360 kg) 383 lb (174 kg)
160 2.000 in (50.80 mm) 1.125 in (28.58 mm) 50,000 lb (23,000 kg) 500 lb (230 kg)
180 2.250 in (57.15 mm) 1.460 in (37.08 mm) 63,280 lb (28,700 kg) 633 lb (287 kg)
200 2.500 in (63.50 mm) 1.562 in (39.67 mm) 78,175 lb (35,460 kg) 781 lb (354 kg)
240 3.000 in (76.20 mm) 1.875 in (47.63 mm) 112,500 lb (51,000 kg) 1,000 lb (450 kg

For mnemonic purposes, below is another presentation of key dimensions from the same standard, expressed in fractions of an inch (which was part of the thinking behind the choice of preferred numbers in the ANSI standard):

Pitch (inches) Pitch expressed
in eighths
ANSI standard
chain number
Width (inches)
14 28 25 18
38 38 35 316
12 48 41 14
12 48 40 516
58 58 50 38
34 68 60 12
1 88 80 58

Notes:
1. The pitch is the distance between roller centers. The width is the distance between the link plates (i.e. slightly more than the roller width to allow for clearance).
2. The right-hand digit of the standard denotes 0 = normal chain, 1 = lightweight chain, 5 = rollerless bushing chain.
3. The left-hand digit denotes the number of eighths of an inch that make up the pitch.
4. An “H” following the standard number denotes heavyweight chain. A hyphenated number following the standard number denotes double-strand (2), triple-strand (3), and so on. Thus 60H-3 denotes number 60 heavyweight triple-strand chain.
 A typical bicycle chain (for derailleur gears) uses narrow 1⁄2-inch-pitch chain. The width of the chain is variable, and does not affect the load capacity. The more sprockets at the rear wheel (historically 3-6, nowadays 7-12 sprockets), the narrower the chain. Chains are sold according to the number of speeds they are designed to work with, for example, “10 speed chain”. Hub gear or single speed bicycles use 1/2″ x 1/8″ chains, where 1/8″ refers to the maximum thickness of a sprocket that can be used with the chain.

Typically chains with parallel shaped links have an even number of links, with each narrow link followed by a broad one. Chains built up with a uniform type of link, narrow at 1 and broad at the other end, can be made with an odd number of links, which can be an advantage to adapt to a special chainwheel-distance; on the other side such a chain tends to be not so strong.

Roller chains made using ISO standard are sometimes called as isochains.

 

WHY CHOOSE US 

1. Reliable Quality Assurance System
2. Cutting-Edge Computer-Controlled CNC Machines
3. Bespoke Solutions from Highly Experienced Specialists
4. Customization and OEM Available for Specific Application
5. Extensive Inventory of Spare Parts and Accessories
6. Well-Developed CZPT Marketing Network
7. Efficient After-Sale Service System

 

The 219 sets of advanced automatic production equipment provide guarantees for high product quality. The 167 engineers and technicians with senior professional titles can design and develop products to meet the exact demands of customers, and OEM customizations are also available with us. Our sound global service network can provide customers with timely after-sales technical services.

We are not just a manufacturer and supplier, but also an industry consultant. We work pro-actively with you to offer expert advice and product recommendations in order to end up with a most cost effective product available for your specific application. The clients we serve CZPT range from end users to distributors and OEMs. Our OEM replacements can be substituted wherever necessary and suitable for both repair and new assemblies.

 

Standard or Nonstandard: Standard
Application: Textile Machinery, Garment Machinery, Conveyer Equipment, Packaging Machinery, Electric Cars, Motorcycle, Food Machinery, Marine, Mining Equipment, Agricultural Machinery, Car, Food and Beverage Industry, Motorcycle Parts
Surface Treatment: Polishing
Structure: Roller Chain
Material: Alloy
Type: Short Pitch Chain
Samples:
US$ 0/Meter
1 Meter(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

bush chain

How do you calculate the required length of a bush chain?

The length of a bush chain is determined by the distance between the sprockets or pulleys it needs to span. To calculate the required length, you can follow these steps:

1. Measure the distance between the centers of the sprockets or pulleys where the bush chain will be installed. This is known as the “center distance.”

2. Determine the number of chain links required. The number of links depends on the pitch of the bush chain, which is the distance between adjacent pins. The pitch is typically specified by the chain manufacturer.

3. Divide the center distance by the pitch of the chain to calculate the number of chain links needed. Round up to the nearest whole number to ensure proper engagement of the chain with the sprockets.

4. Multiply the number of chain links by the pitch to obtain the actual length of the chain required.

Keep in mind that the calculated chain length is a starting point and may need to be adjusted during installation. It is recommended to provide some additional slack in the chain to accommodate any tensioning or adjustment requirements.

It’s important to refer to the manufacturer’s specifications and guidelines for the specific bush chain you are using, as different chain types and designs may have variations in calculating the required length.

bush chain

How do you ensure proper tensioning and alignment of a bush chain?

Proper tensioning and alignment of a bush chain are crucial for its optimal performance and longevity. Here are the steps to ensure proper tensioning and alignment:

1. Tensioning:

– Consult the manufacturer’s guidelines: Refer to the manufacturer’s specifications or guidelines for the recommended tensioning method and tension values specific to the bush chain you are using.

– Check the sag: Measure the sag of the chain between two sprockets. The sag should be within the recommended range provided by the manufacturer. Adjust the tension as necessary to achieve the proper sag.

– Use a tensioning device: Depending on the application, you may use a tensioning device such as a tensioner or an idler sprocket to achieve the desired tension. These devices help maintain the tension over time as the chain wears.

2. Alignment:

– Visual inspection: Visually inspect the alignment of the chain with the sprockets. Ensure that the chain is properly seated on the sprocket teeth and running parallel to the sprocket shaft.

– Sprocket alignment: Check the alignment of the sprockets themselves. They should be aligned with each other and positioned correctly on their respective shafts.

– Adjustment: If misalignment is detected, make the necessary adjustments to align the chain and sprockets. This may involve repositioning the sprockets or adjusting the tensioning devices.

3. Regular inspection and maintenance:

– Periodically check the tension and alignment of the bush chain during routine maintenance. This ensures that any changes or deviations can be detected and corrected promptly.

– Monitor wear and elongation: Over time, bush chains may experience wear and elongation. Regularly measure the chain length or inspect for signs of elongation to determine if chain replacement or adjustment is necessary.

Proper tensioning and alignment of a bush chain optimize its performance, minimize wear, and reduce the risk of premature failure. Following the manufacturer’s guidelines and performing regular inspections and maintenance will help ensure the proper tensioning and alignment of the bush chain in your application.

bush chain

What are the main components of a bush chain?

A bush chain consists of several key components that work together to enable efficient power transmission. The main components of a bush chain include:

1. Bushings: Bushings are cylindrical components with a hollow bore that fit into the chain links. They provide a low-friction interface between the chain pins and the link plates, allowing smooth rotation and reducing wear.

2. Pins: Pins are cylindrical metal rods that connect the inner plates and outer plates of the chain links. They pass through the bushings and provide the rotational movement of the chain. The pins are hardened and precisely machined to withstand the loads and provide durability.

3. Link Plates: Link plates are flat metal plates that are connected by the pins. They form the main structure of the chain and transmit the tensile forces. The link plates are typically made of high-strength steel and are designed to withstand the applied loads.

4. Rollers: Some bush chains feature rollers that are located between the link plates and the bushings. These rollers allow smoother engagement with sprockets or other mating components, reducing friction and enhancing the chain’s performance. Rollers also help to maintain proper chain tension.

5. Retaining Clips or Rivets: Retaining clips or rivets are used to secure the pins in place and prevent them from rotating within the link plates. They ensure the integrity of the chain assembly and maintain the proper alignment of the components.

6. Lubrication: Lubrication is crucial for the proper functioning and longevity of a bush chain. It helps to reduce friction, minimize wear, and prevent corrosion. Lubrication can be applied through various methods, such as oil bath, oil drip, or periodic lubrication.

These components work together to provide reliable power transmission in bush chain systems. The precise design and construction of each component contribute to the overall strength, durability, and efficiency of the chain.

China high quality Gearbox Belt Transmission Parts Engineering and Construction Machinery 50-2 a Series Short Pitch Precision Duplex Roller Chains and Bush Chains  China high quality Gearbox Belt Transmission Parts Engineering and Construction Machinery 50-2 a Series Short Pitch Precision Duplex Roller Chains and Bush Chains
editor by CX 2023-09-04

China high quality Martin General Hardware 32b-1 B Series Short Pitch Precision Simplex Industrial Machinery Motorcycle & Bicycle Roller Chains and Bush Chains with Link

Product Description

B Series Short pitch Precision Simplex Roller Chains & Bush Chains

 

ISO/DIN
Chain No.
Pitch

P
mm

Roller diameter

d1max
mm

Width between inner plates
b1min
mm
Pin diameter

d2max
mm

Pin length Inner plate depth
h2max
mm
Plate thickness

t/Tmax
mm

Tensile strength

Qmin
kN/lbf

Average tensile strength
Q0
kN
Weight per meter
q
kg/m
Lmax
mm
Lcmax
mm
32B-1 50.800 29.21 30.99 17.81 66.00 71.0 42.00 7.00/6.0 250.0/56818 277.5 10.25

*Straight side plates
 

ROLLER CHAIN

Roller chain or bush roller chain is the type of chain drive most commonly used for transmission of mechanical power on many kinds of domestic, industrial and agricultural machinery, including conveyors, wire- and tube-drawing machines, printing presses, cars, motorcycles, and bicycles. It consists of a series of short cylindrical rollers held together by side links. It is driven by a toothed wheel called a sprocket. It is a simple, reliable, and efficient means of power transmission.

CONSTRUCTION OF THE CHAIN

Two different sizes of roller chain, showing construction.
There are 2 types of links alternating in the bush roller chain. The first type is inner links, having 2 inner plates held together by 2 sleeves or bushings CZPT which rotate 2 rollers. Inner links alternate with the second type, the outer links, consisting of 2 outer plates held together by pins passing through the bushings of the inner links. The “bushingless” roller chain is similar in operation though not in construction; instead of separate bushings or sleeves holding the inner plates together, the plate has a tube stamped into it protruding from the hole which serves the same purpose. This has the advantage of removing 1 step in assembly of the chain.

The roller chain design reduces friction compared to simpler designs, resulting in higher efficiency and less wear. The original power transmission chain varieties lacked rollers and bushings, with both the inner and outer plates held by pins which directly contacted the sprocket teeth; however this configuration exhibited extremely rapid wear of both the sprocket teeth, and the plates where they pivoted on the pins. This problem was partially solved by the development of bushed chains, with the pins holding the outer plates passing through bushings or sleeves connecting the inner plates. This distributed the wear over a greater area; however the teeth of the sprockets still wore more rapidly than is desirable, from the sliding friction against the bushings. The addition of rollers surrounding the bushing sleeves of the chain and provided rolling contact with the teeth of the sprockets resulting in excellent resistance to wear of both sprockets and chain as well. There is even very low friction, as long as the chain is sufficiently lubricated. Continuous, clean, lubrication of roller chains is of primary importance for efficient operation as well as correct tensioning.

LUBRICATION

Many driving chains (for example, in factory equipment, or driving a camshaft inside an internal combustion engine) operate in clean environments, and thus the wearing surfaces (that is, the pins and bushings) are safe from precipitation and airborne grit, many even in a sealed environment such as an oil bath. Some roller chains are designed to have o-rings built into the space between the outside link plate and the inside roller link plates. Chain manufacturers began to include this feature in 1971 after the application was invented by Joseph Montano while working for Whitney Chain of Hartford, Connecticut. O-rings were included as a way to improve lubrication to the links of power transmission chains, a service that is vitally important to extending their working life. These rubber fixtures form a barrier that holds factory applied lubricating grease inside the pin and bushing wear areas. Further, the rubber o-rings prevent dirt and other contaminants from entering inside the chain linkages, where such particles would otherwise cause significant wear.[citation needed]

There are also many chains that have to operate in dirty conditions, and for size or operational reasons cannot be sealed. Examples include chains on farm equipment, bicycles, and chain saws. These chains will necessarily have relatively high rates of wear, particularly when the operators are prepared to accept more friction, less efficiency, more noise and more frequent replacement as they neglect lubrication and adjustment.

Many oil-based lubricants attract dirt and other particles, eventually forming an CZPT paste that will compound wear on chains. This problem can be circumvented by use of a “dry” PTFE spray, which forms a solid film after application and repels both particles and moisture.

VARIANTS DESIGN

Layout of a roller chain: 1. Outer plate, 2. Inner plate, 3. Pin, 4. Bushing, 5. Roller
If the chain is not being used for a high wear application (for instance if it is just transmitting motion from a hand-operated lever to a control shaft on a machine, or a sliding door on an oven), then 1 of the simpler types of chain may still be used. Conversely, where extra strength but the smooth drive of a smaller pitch is required, the chain may be “siamesed”; instead of just 2 rows of plates on the outer sides of the chain, there may be 3 (“duplex”), 4 (“triplex”), or more rows of plates running parallel, with bushings and rollers between each adjacent pair, and the same number of rows of teeth running in parallel on the sprockets to match. Timing chains on automotive engines, for example, typically have multiple rows of plates called strands.

Roller chain is made in several sizes, the most common American National Standards Institute (ANSI) standards being 40, 50, 60, and 80. The first digit(s) indicate the pitch of the chain in eighths of an inch, with the last digit being 0 for standard chain, 1 for lightweight chain, and 5 for bushed chain with no rollers. Thus, a chain with half-inch pitch would be a #40 while a #160 sprocket would have teeth spaced 2 inches apart, etc. Metric pitches are expressed in sixteenths of an inch; thus a metric #8 chain (08B-1) would be equivalent to an ANSI #40. Most roller chain is made from plain carbon or alloy steel, but stainless steel is used in food processing machinery or other places where lubrication is a problem, and nylon or brass are occasionally seen for the same reason.

Roller chain is ordinarily hooked up using a master link (also known as a connecting link), which typically has 1 pin held by a horseshoe clip rather than friction fit, allowing it to be inserted or removed with simple tools. Chain with a removable link or pin is also known as cottered chain, which allows the length of the chain to be adjusted. Half links (also known as offsets) are available and are used to increase the length of the chain by a single roller. Riveted roller chain has the master link (also known as a connecting link) “riveted” or mashed on the ends. These pins are made to be durable and are not removable.

USE

An example of 2 ‘ghost’ sprockets tensioning a triplex roller chain system
Roller chains are used in low- to mid-speed drives at around 600 to 800 feet per minute; however, at higher speeds, around 2,000 to 3,000 feet per minute, V-belts are normally used due to wear and noise issues.
A bicycle chain is a form of roller chain. Bicycle chains may have a master link, or may require a chain tool for removal and installation. A similar but larger and thus stronger chain is used on most motorcycles although it is sometimes replaced by either a toothed belt or a shaft drive, which offer lower noise level and fewer maintenance requirements.
The great majority of automobile engines use roller chains to drive the camshaft(s). Very high performance engines often use gear drive, and starting in the early 1960s toothed belts were used by some manufacturers.
Chains are also used in forklifts using hydraulic rams as a pulley to raise and lower the carriage; however, these chains are not considered roller chains, but are classified as lift or leaf chains.
Chainsaw cutting chains superficially resemble roller chains but are more closely related to leaf chains. They are driven by projecting drive links which also serve to locate the chain CZPT the bar.

Sea Harrier FA.2 ZA195 front (cold) vector thrust nozzle – the nozzle is rotated by a chain drive from an air motor
A perhaps unusual use of a pair of motorcycle chains is in the Harrier Jump Jet, where a chain drive from an air motor is used to rotate the movable engine nozzles, allowing them to be pointed downwards for hovering flight, or to the rear for normal CZPT flight, a system known as Thrust vectoring.

WEAR

 

The effect of wear on a roller chain is to increase the pitch (spacing of the links), causing the chain to grow longer. Note that this is due to wear at the pivoting pins and bushes, not from actual stretching of the metal (as does happen to some flexible steel components such as the hand-brake cable of a motor vehicle).

With modern chains it is unusual for a chain (other than that of a bicycle) to wear until it breaks, since a worn chain leads to the rapid onset of wear on the teeth of the sprockets, with ultimate failure being the loss of all the teeth on the sprocket. The sprockets (in particular the smaller of the two) suffer a grinding motion that puts a characteristic hook shape into the driven face of the teeth. (This effect is made worse by a chain improperly tensioned, but is unavoidable no matter what care is taken). The worn teeth (and chain) no longer provides smooth transmission of power and this may become evident from the noise, the vibration or (in car engines using a timing chain) the variation in ignition timing seen with a timing light. Both sprockets and chain should be replaced in these cases, since a new chain on worn sprockets will not last long. However, in less severe cases it may be possible to save the larger of the 2 sprockets, since it is always the smaller 1 that suffers the most wear. Only in very light-weight applications such as a bicycle, or in extreme cases of improper tension, will the chain normally jump off the sprockets.

The lengthening due to wear of a chain is calculated by the following formula:

M = the length of a number of links measured

S = the number of links measured

P = Pitch

In industry, it is usual to monitor the movement of the chain tensioner (whether manual or automatic) or the exact length of a drive chain (one rule of thumb is to replace a roller chain which has elongated 3% on an adjustable drive or 1.5% on a fixed-center drive). A simpler method, particularly suitable for the cycle or motorcycle user, is to attempt to pull the chain away from the larger of the 2 sprockets, whilst ensuring the chain is taut. Any significant movement (e.g. making it possible to see through a gap) probably indicates a chain worn up to and beyond the limit. Sprocket damage will result if the problem is ignored. Sprocket wear cancels this effect, and may mask chain wear.

CHAIN STRENGTH

The most common measure of roller chain’s strength is tensile strength. Tensile strength represents how much load a chain can withstand under a one-time load before breaking. Just as important as tensile strength is a chain’s fatigue strength. The critical factors in a chain’s fatigue strength is the quality of steel used to manufacture the chain, the heat treatment of the chain components, the quality of the pitch hole fabrication of the linkplates, and the type of shot plus the intensity of shot peen coverage on the linkplates. Other factors can include the thickness of the linkplates and the design (contour) of the linkplates. The rule of thumb for roller chain operating on a continuous drive is for the chain load to not exceed a mere 1/6 or 1/9 of the chain’s tensile strength, depending on the type of master links used (press-fit vs. slip-fit)[citation needed]. Roller chains operating on a continuous drive beyond these thresholds can and typically do fail prematurely via linkplate fatigue failure.

The standard minimum ultimate strength of the ANSI 29.1 steel chain is 12,500 x (pitch, in inches)2. X-ring and O-Ring chains greatly decrease wear by means of internal lubricants, increasing chain life. The internal lubrication is inserted by means of a vacuum when riveting the chain together.

CHAIN STHangZhouRDS

Standards organizations (such as ANSI and ISO) maintain standards for design, dimensions, and interchangeability of transmission chains. For example, the following Table shows data from ANSI standard B29.1-2011 (Precision Power Transmission Roller Chains, Attachments, and Sprockets) developed by the American Society of Mechanical Engineers (ASME). See the references[8][9][10] for additional information.

ASME/ANSI B29.1-2011 Roller Chain Standard SizesSizePitchMaximum Roller DiameterMinimum Ultimate Tensile StrengthMeasuring Load25

ASME/ANSI B29.1-2011 Roller Chain Standard Sizes
Size Pitch Maximum Roller Diameter Minimum Ultimate Tensile Strength Measuring Load
25 0.250 in (6.35 mm) 0.130 in (3.30 mm) 780 lb (350 kg) 18 lb (8.2 kg)
35 0.375 in (9.53 mm) 0.200 in (5.08 mm) 1,760 lb (800 kg) 18 lb (8.2 kg)
41 0.500 in (12.70 mm) 0.306 in (7.77 mm) 1,500 lb (680 kg) 18 lb (8.2 kg)
40 0.500 in (12.70 mm) 0.312 in (7.92 mm) 3,125 lb (1,417 kg) 31 lb (14 kg)
50 0.625 in (15.88 mm) 0.400 in (10.16 mm) 4,880 lb (2,210 kg) 49 lb (22 kg)
60 0.750 in (19.05 mm) 0.469 in (11.91 mm) 7,030 lb (3,190 kg) 70 lb (32 kg)
80 1.000 in (25.40 mm) 0.625 in (15.88 mm) 12,500 lb (5,700 kg) 125 lb (57 kg)
100 1.250 in (31.75 mm) 0.750 in (19.05 mm) 19,531 lb (8,859 kg) 195 lb (88 kg)
120 1.500 in (38.10 mm) 0.875 in (22.23 mm) 28,125 lb (12,757 kg) 281 lb (127 kg)
140 1.750 in (44.45 mm) 1.000 in (25.40 mm) 38,280 lb (17,360 kg) 383 lb (174 kg)
160 2.000 in (50.80 mm) 1.125 in (28.58 mm) 50,000 lb (23,000 kg) 500 lb (230 kg)
180 2.250 in (57.15 mm) 1.460 in (37.08 mm) 63,280 lb (28,700 kg) 633 lb (287 kg)
200 2.500 in (63.50 mm) 1.562 in (39.67 mm) 78,175 lb (35,460 kg) 781 lb (354 kg)
240 3.000 in (76.20 mm) 1.875 in (47.63 mm) 112,500 lb (51,000 kg) 1,000 lb (450 kg

For mnemonic purposes, below is another presentation of key dimensions from the same standard, expressed in fractions of an inch (which was part of the thinking behind the choice of preferred numbers in the ANSI standard):

Pitch (inches) Pitch expressed
in eighths
ANSI standard
chain number
Width (inches)
14 28 25 18
38 38 35 316
12 48 41 14
12 48 40 516
58 58 50 38
34 68 60 12
1 88 80 58

Notes:
1. The pitch is the distance between roller centers. The width is the distance between the link plates (i.e. slightly more than the roller width to allow for clearance).
2. The right-hand digit of the standard denotes 0 = normal chain, 1 = lightweight chain, 5 = rollerless bushing chain.
3. The left-hand digit denotes the number of eighths of an inch that make up the pitch.
4. An “H” following the standard number denotes heavyweight chain. A hyphenated number following the standard number denotes double-strand (2), triple-strand (3), and so on. Thus 60H-3 denotes number 60 heavyweight triple-strand chain.
 A typical bicycle chain (for derailleur gears) uses narrow 1⁄2-inch-pitch chain. The width of the chain is variable, and does not affect the load capacity. The more sprockets at the rear wheel (historically 3-6, nowadays 7-12 sprockets), the narrower the chain. Chains are sold according to the number of speeds they are designed to work with, for example, “10 speed chain”. Hub gear or single speed bicycles use 1/2″ x 1/8″ chains, where 1/8″ refers to the maximum thickness of a sprocket that can be used with the chain.

Typically chains with parallel shaped links have an even number of links, with each narrow link followed by a broad one. Chains built up with a uniform type of link, narrow at 1 and broad at the other end, can be made with an odd number of links, which can be an advantage to adapt to a special chainwheel-distance; on the other side such a chain tends to be not so strong.

Roller chains made using ISO standard are sometimes called as isochains.

 

WHY CHOOSE US 

1. Reliable Quality Assurance System
2. Cutting-Edge Computer-Controlled CNC Machines
3. Bespoke Solutions from Highly Experienced Specialists
4. Customization and OEM Available for Specific Application
5. Extensive Inventory of Spare Parts and Accessories
6. Well-Developed CZPT Marketing Network
7. Efficient After-Sale Service System

 

The 219 sets of advanced automatic production equipment provide guarantees for high product quality. The 167 engineers and technicians with senior professional titles can design and develop products to meet the exact demands of customers, and OEM customizations are also available with us. Our sound global service network can provide customers with timely after-sales technical services.

We are not just a manufacturer and supplier, but also an industry consultant. We work pro-actively with you to offer expert advice and product recommendations in order to end up with a most cost effective product available for your specific application. The clients we serve CZPT range from end users to distributors and OEMs. Our OEM replacements can be substituted wherever necessary and suitable for both repair and new assemblies.

 

 

 

Usage: Transmission Chain, Drag Chain, Conveyor Chain, Dedicated Special Chain
Material: Alloy
Surface Treatment: Polishing
Feature: Heat Resistant
Chain Size: Roller Chains
Structure: Roller Chain
Samples:
US$ 0/Meter
1 Meter(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

bush chain

What are the benefits of using a plastic bush chain?

Plastic bush chains offer several advantages in various industrial applications. Here are some benefits of using a plastic bush chain:

1. Corrosion Resistance: Plastic bush chains are highly resistant to corrosion, making them ideal for use in humid or corrosive environments. Unlike metal chains, plastic chains do not rust or deteriorate when exposed to moisture, chemicals, or certain harsh conditions.

2. Lightweight: Plastic bush chains are significantly lighter than their metal counterparts. This lightweight nature reduces the overall weight of the system, making it easier to handle and operate. It also minimizes the load on supporting structures and reduces energy consumption.

3. Low Noise and Vibration: Plastic bush chains produce minimal noise and vibration during operation. Their smooth and quiet operation is beneficial in applications where noise reduction is required, such as in conveyor systems or assembly lines located in noise-sensitive environments.

4. Self-Lubrication: Some plastic bush chains are designed with built-in self-lubricating properties. These chains incorporate lubricating additives or solid lubricants within the plastic material, reducing the need for external lubrication. Self-lubricating plastic bush chains result in reduced maintenance requirements and prolonged chain life.

5. Chemical Resistance: Plastic bush chains exhibit excellent resistance to various chemicals, including oils, solvents, acids, and alkalis. This chemical resistance allows them to maintain their performance and structural integrity even in environments where exposure to chemicals is common.

6. Design Flexibility: Plastic bush chains offer design flexibility, allowing for customization to meet specific application requirements. They can be manufactured in various shapes, sizes, and configurations to accommodate different load capacities, speeds, and operating conditions.

7. Reduced Wear on Equipment: Plastic bush chains have lower friction coefficients compared to metal chains. This reduced friction minimizes wear on the sprockets and other mating components, extending the service life of the entire system and reducing maintenance costs.

8. Electrical Insulation: Plastic bush chains have excellent electrical insulation properties, making them suitable for applications where electrical conductivity needs to be avoided. They can be used in electrical or electronic assembly lines or environments where static electricity control is necessary.

These benefits make plastic bush chains a viable alternative to traditional metal chains in various industries, including food processing, packaging, pharmaceuticals, electronics, and many others.

bush chain

Can a bush chain be retrofitted into an existing system?

Yes, a bush chain can be retrofitted into an existing system in many cases. Retrofits are common when there is a need to upgrade or replace the existing chain with a more efficient or higher-quality option. The process of retrofitting a bush chain typically involves the following steps:

1. Evaluation of the existing system: The first step is to assess the existing system and determine if a bush chain can be installed. Factors such as space availability, compatibility with existing components, and load requirements need to be considered.

2. Selection of the appropriate bush chain: Once the system has been evaluated, the next step is to select the appropriate bush chain for the retrofit. This involves considering factors such as pitch, size, strength, and material compatibility to ensure a proper fit and optimal performance.

3. Modification of the system: Depending on the design of the existing system, some modifications may be required to accommodate the bush chain. This could involve adjusting the sprockets, modifying the chain guides, or making other necessary changes to ensure proper alignment and tensioning.

4. Installation of the bush chain: Once the modifications have been made, the bush chain can be installed into the existing system. This typically involves removing the old chain and replacing it with the new bush chain. Proper tensioning and alignment should be ensured during the installation process.

5. Testing and adjustments: After the bush chain is installed, it is important to conduct thorough testing to ensure proper operation. This includes checking for smooth movement, correct tension, and proper engagement with the sprockets. Any necessary adjustments should be made to optimize performance.

It is important to note that the feasibility of retrofitting a bush chain into an existing system depends on the specific requirements and design of the system. In some cases, additional modifications or adaptations may be needed to ensure compatibility and performance. Consulting with a qualified engineer or chain manufacturer can help determine the best approach for retrofitting a bush chain into an existing system.

bush chain

What are the applications of bush chains in industrial settings?

Bush chains, also known as bush roller chains or bushing chains, have a wide range of applications in various industrial settings. Their versatility and durability make them suitable for demanding environments and heavy-duty applications. Here are some common industrial applications of bush chains:

1. Industrial Machinery: Bush chains are used in a wide range of industrial machinery, including conveyors, material handling equipment, packaging machines, printing presses, and textile machinery. They provide reliable power transmission and can handle high loads and continuous operation.

2. Agricultural Equipment: Bush chains are extensively used in agricultural machinery such as tractors, combines, harvesters, and irrigation systems. They facilitate the transfer of power from the engine to various agricultural implements and enable efficient operation in tough farming conditions.

3. Automotive Systems: Bush chains find applications in automotive systems such as timing drives, camshaft drives, and engine oil pumps. They ensure precise synchronization of engine components and reliable power transmission for efficient and smooth operation.

4. Material Handling: Bush chains are commonly used in material handling equipment like forklifts, hoists, and cranes. They enable the lifting and movement of heavy loads and ensure reliable power transmission in demanding industrial environments.

5. Mining and Construction: In the mining and construction industries, bush chains are employed in equipment such as excavators, bulldozers, crushers, and conveyor systems. They can withstand harsh conditions, high loads, and abrasive materials commonly encountered in these industries.

6. Power Transmission: Bush chains are utilized in power transmission systems where torque and speed need to be transferred from one component to another. They are commonly found in power plants, pulp and paper mills, steel mills, and other heavy industrial applications.

7. Food Processing: Bush chains designed for food-grade applications are used in the food processing industry. They comply with strict hygiene and sanitation standards and are resistant to corrosion, allowing for safe and efficient operation in food production lines.

Overall, bush chains play a vital role in numerous industrial applications, providing reliable and efficient power transmission, durability, and resistance to harsh operating conditions. Their adaptability and strength make them a preferred choice in various industrial sectors.

China high quality Martin General Hardware 32b-1 B Series Short Pitch Precision Simplex Industrial Machinery Motorcycle & Bicycle Roller Chains and Bush Chains with Link  China high quality Martin General Hardware 32b-1 B Series Short Pitch Precision Simplex Industrial Machinery Motorcycle & Bicycle Roller Chains and Bush Chains with Link
editor by CX 2023-08-11

China high quality Short Pitch Precision 80-3 a Series Triplex Roller Chains and Bush Chains

Product Description

A Series Short Pitch Precision Triplex Roller Chains & Bush Chains

 

 

ISO/ANSI/ DIN
Chain No.
Chain No. Pitch
P
mm
Roller diameter

d1max
mm

Width between inner plates
b1min
mm
Pin diameter

d2max
mm

Pin length Inner plate depth
h2max
mm
Plate thickness
Tmax
mm
  
Transverse pitch

Pt
mm

Tensile strength

Qmin
kN/lbf

Average tensile strength
Q0
kN
Weigth per meter
q
kg/m
Lmax
mm
Lcmax
mm
80-3 16A-3 25.400 15.88 15.75 7.92 91.7 93.6 24.00 3.25 29.29 170.1/38659 222.9 7.89

*Bush chain: d1 in the table indicates the external diameter of the bush

 

ROLLER CHAIN

Roller chain or bush roller chain is the type of chain drive most commonly used for transmission of mechanical power on many kinds of domestic, industrial and agricultural machinery, including conveyors, wire- and tube-drawing machines, printing presses, cars, motorcycles, and bicycles. It consists of a series of short cylindrical rollers held together by side links. It is driven by a toothed wheel called a sprocket. It is a simple, reliable, and efficient means of power transmission.

CONSTRUCTION OF THE CHAIN

Two different sizes of roller chain, showing construction.
There are 2 types of links alternating in the bush roller chain. The first type is inner links, having 2 inner plates held together by 2 sleeves or bushings CZPT which rotate 2 rollers. Inner links alternate with the second type, the outer links, consisting of 2 outer plates held together by pins passing through the bushings of the inner links. The “bushingless” roller chain is similar in operation though not in construction; instead of separate bushings or sleeves holding the inner plates together, the plate has a tube stamped into it protruding from the hole which serves the same purpose. This has the advantage of removing 1 step in assembly of the chain.

The roller chain design reduces friction compared to simpler designs, resulting in higher efficiency and less wear. The original power transmission chain varieties lacked rollers and bushings, with both the inner and outer plates held by pins which directly contacted the sprocket teeth; however this configuration exhibited extremely rapid wear of both the sprocket teeth, and the plates where they pivoted on the pins. This problem was partially solved by the development of bushed chains, with the pins holding the outer plates passing through bushings or sleeves connecting the inner plates. This distributed the wear over a greater area; however the teeth of the sprockets still wore more rapidly than is desirable, from the sliding friction against the bushings. The addition of rollers surrounding the bushing sleeves of the chain and provided rolling contact with the teeth of the sprockets resulting in excellent resistance to wear of both sprockets and chain as well. There is even very low friction, as long as the chain is sufficiently lubricated. Continuous, clean, lubrication of roller chains is of primary importance for efficient operation as well as correct tensioning.

LUBRICATION

Many driving chains (for example, in factory equipment, or driving a camshaft inside an internal combustion engine) operate in clean environments, and thus the wearing surfaces (that is, the pins and bushings) are safe from precipitation and airborne grit, many even in a sealed environment such as an oil bath. Some roller chains are designed to have o-rings built into the space between the outside link plate and the inside roller link plates. Chain manufacturers began to include this feature in 1971 after the application was invented by Joseph Montano while working for Whitney Chain of Hartford, Connecticut. O-rings were included as a way to improve lubrication to the links of power transmission chains, a service that is vitally important to extending their working life. These rubber fixtures form a barrier that holds factory applied lubricating grease inside the pin and bushing wear areas. Further, the rubber o-rings prevent dirt and other contaminants from entering inside the chain linkages, where such particles would otherwise cause significant wear.[citation needed]

There are also many chains that have to operate in dirty conditions, and for size or operational reasons cannot be sealed. Examples include chains on farm equipment, bicycles, and chain saws. These chains will necessarily have relatively high rates of wear, particularly when the operators are prepared to accept more friction, less efficiency, more noise and more frequent replacement as they neglect lubrication and adjustment.

Many oil-based lubricants attract dirt and other particles, eventually forming an CZPT paste that will compound wear on chains. This problem can be circumvented by use of a “dry” PTFE spray, which forms a solid film after application and repels both particles and moisture.

VARIANTS DESIGN

Layout of a roller chain: 1. Outer plate, 2. Inner plate, 3. Pin, 4. Bushing, 5. Roller
If the chain is not being used for a high wear application (for instance if it is just transmitting motion from a hand-operated lever to a control shaft on a machine, or a sliding door on an oven), then 1 of the simpler types of chain may still be used. Conversely, where extra strength but the smooth drive of a smaller pitch is required, the chain may be “siamesed”; instead of just 2 rows of plates on the outer sides of the chain, there may be 3 (“duplex”), 4 (“triplex”), or more rows of plates running parallel, with bushings and rollers between each adjacent pair, and the same number of rows of teeth running in parallel on the sprockets to match. Timing chains on automotive engines, for example, typically have multiple rows of plates called strands.

Roller chain is made in several sizes, the most common American National Standards Institute (ANSI) standards being 40, 50, 60, and 80. The first digit(s) indicate the pitch of the chain in eighths of an inch, with the last digit being 0 for standard chain, 1 for lightweight chain, and 5 for bushed chain with no rollers. Thus, a chain with half-inch pitch would be a #40 while a #160 sprocket would have teeth spaced 2 inches apart, etc. Metric pitches are expressed in sixteenths of an inch; thus a metric #8 chain (08B-1) would be equivalent to an ANSI #40. Most roller chain is made from plain carbon or alloy steel, but stainless steel is used in food processing machinery or other places where lubrication is a problem, and nylon or brass are occasionally seen for the same reason.

Roller chain is ordinarily hooked up using a master link (also known as a connecting link), which typically has 1 pin held by a horseshoe clip rather than friction fit, allowing it to be inserted or removed with simple tools. Chain with a removable link or pin is also known as cottered chain, which allows the length of the chain to be adjusted. Half links (also known as offsets) are available and are used to increase the length of the chain by a single roller. Riveted roller chain has the master link (also known as a connecting link) “riveted” or mashed on the ends. These pins are made to be durable and are not removable.

USE

An example of 2 ‘ghost’ sprockets tensioning a triplex roller chain system
Roller chains are used in low- to mid-speed drives at around 600 to 800 feet per minute; however, at higher speeds, around 2,000 to 3,000 feet per minute, V-belts are normally used due to wear and noise issues.
A bicycle chain is a form of roller chain. Bicycle chains may have a master link, or may require a chain tool for removal and installation. A similar but larger and thus stronger chain is used on most motorcycles although it is sometimes replaced by either a toothed belt or a shaft drive, which offer lower noise level and fewer maintenance requirements.
The great majority of automobile engines use roller chains to drive the camshaft(s). Very high performance engines often use gear drive, and starting in the early 1960s toothed belts were used by some manufacturers.
Chains are also used in forklifts using hydraulic rams as a pulley to raise and lower the carriage; however, these chains are not considered roller chains, but are classified as lift or leaf chains.
Chainsaw cutting chains superficially resemble roller chains but are more closely related to leaf chains. They are driven by projecting drive links which also serve to locate the chain CZPT the bar.

Sea Harrier FA.2 ZA195 front (cold) vector thrust nozzle – the nozzle is rotated by a chain drive from an air motor
A perhaps unusual use of a pair of motorcycle chains is in the Harrier Jump Jet, where a chain drive from an air motor is used to rotate the movable engine nozzles, allowing them to be pointed downwards for hovering flight, or to the rear for normal CZPT flight, a system known as Thrust vectoring.

WEAR

 

The effect of wear on a roller chain is to increase the pitch (spacing of the links), causing the chain to grow longer. Note that this is due to wear at the pivoting pins and bushes, not from actual stretching of the metal (as does happen to some flexible steel components such as the hand-brake cable of a motor vehicle).

With modern chains it is unusual for a chain (other than that of a bicycle) to wear until it breaks, since a worn chain leads to the rapid onset of wear on the teeth of the sprockets, with ultimate failure being the loss of all the teeth on the sprocket. The sprockets (in particular the smaller of the two) suffer a grinding motion that puts a characteristic hook shape into the driven face of the teeth. (This effect is made worse by a chain improperly tensioned, but is unavoidable no matter what care is taken). The worn teeth (and chain) no longer provides smooth transmission of power and this may become evident from the noise, the vibration or (in car engines using a timing chain) the variation in ignition timing seen with a timing light. Both sprockets and chain should be replaced in these cases, since a new chain on worn sprockets will not last long. However, in less severe cases it may be possible to save the larger of the 2 sprockets, since it is always the smaller 1 that suffers the most wear. Only in very light-weight applications such as a bicycle, or in extreme cases of improper tension, will the chain normally jump off the sprockets.

The lengthening due to wear of a chain is calculated by the following formula:

M = the length of a number of links measured

S = the number of links measured

P = Pitch

In industry, it is usual to monitor the movement of the chain tensioner (whether manual or automatic) or the exact length of a drive chain (one rule of thumb is to replace a roller chain which has elongated 3% on an adjustable drive or 1.5% on a fixed-center drive). A simpler method, particularly suitable for the cycle or motorcycle user, is to attempt to pull the chain away from the larger of the 2 sprockets, whilst ensuring the chain is taut. Any significant movement (e.g. making it possible to see through a gap) probably indicates a chain worn up to and beyond the limit. Sprocket damage will result if the problem is ignored. Sprocket wear cancels this effect, and may mask chain wear.

CHAIN STRENGTH

The most common measure of roller chain’s strength is tensile strength. Tensile strength represents how much load a chain can withstand under a one-time load before breaking. Just as important as tensile strength is a chain’s fatigue strength. The critical factors in a chain’s fatigue strength is the quality of steel used to manufacture the chain, the heat treatment of the chain components, the quality of the pitch hole fabrication of the linkplates, and the type of shot plus the intensity of shot peen coverage on the linkplates. Other factors can include the thickness of the linkplates and the design (contour) of the linkplates. The rule of thumb for roller chain operating on a continuous drive is for the chain load to not exceed a mere 1/6 or 1/9 of the chain’s tensile strength, depending on the type of master links used (press-fit vs. slip-fit)[citation needed]. Roller chains operating on a continuous drive beyond these thresholds can and typically do fail prematurely via linkplate fatigue failure.

The standard minimum ultimate strength of the ANSI 29.1 steel chain is 12,500 x (pitch, in inches)2. X-ring and O-Ring chains greatly decrease wear by means of internal lubricants, increasing chain life. The internal lubrication is inserted by means of a vacuum when riveting the chain together.

CHAIN STHangZhouRDS

Standards organizations (such as ANSI and ISO) maintain standards for design, dimensions, and interchangeability of transmission chains. For example, the following Table shows data from ANSI standard B29.1-2011 (Precision Power Transmission Roller Chains, Attachments, and Sprockets) developed by the American Society of Mechanical Engineers (ASME). See the references[8][9][10] for additional information.

ASME/ANSI B29.1-2011 Roller Chain Standard SizesSizePitchMaximum Roller DiameterMinimum Ultimate Tensile StrengthMeasuring Load25

ASME/ANSI B29.1-2011 Roller Chain Standard Sizes
Size Pitch Maximum Roller Diameter Minimum Ultimate Tensile Strength Measuring Load
25 0.250 in (6.35 mm) 0.130 in (3.30 mm) 780 lb (350 kg) 18 lb (8.2 kg)
35 0.375 in (9.53 mm) 0.200 in (5.08 mm) 1,760 lb (800 kg) 18 lb (8.2 kg)
41 0.500 in (12.70 mm) 0.306 in (7.77 mm) 1,500 lb (680 kg) 18 lb (8.2 kg)
40 0.500 in (12.70 mm) 0.312 in (7.92 mm) 3,125 lb (1,417 kg) 31 lb (14 kg)
50 0.625 in (15.88 mm) 0.400 in (10.16 mm) 4,880 lb (2,210 kg) 49 lb (22 kg)
60 0.750 in (19.05 mm) 0.469 in (11.91 mm) 7,030 lb (3,190 kg) 70 lb (32 kg)
80 1.000 in (25.40 mm) 0.625 in (15.88 mm) 12,500 lb (5,700 kg) 125 lb (57 kg)
100 1.250 in (31.75 mm) 0.750 in (19.05 mm) 19,531 lb (8,859 kg) 195 lb (88 kg)
120 1.500 in (38.10 mm) 0.875 in (22.23 mm) 28,125 lb (12,757 kg) 281 lb (127 kg)
140 1.750 in (44.45 mm) 1.000 in (25.40 mm) 38,280 lb (17,360 kg) 383 lb (174 kg)
160 2.000 in (50.80 mm) 1.125 in (28.58 mm) 50,000 lb (23,000 kg) 500 lb (230 kg)
180 2.250 in (57.15 mm) 1.460 in (37.08 mm) 63,280 lb (28,700 kg) 633 lb (287 kg)
200 2.500 in (63.50 mm) 1.562 in (39.67 mm) 78,175 lb (35,460 kg) 781 lb (354 kg)
240 3.000 in (76.20 mm) 1.875 in (47.63 mm) 112,500 lb (51,000 kg) 1,000 lb (450 kg

For mnemonic purposes, below is another presentation of key dimensions from the same standard, expressed in fractions of an inch (which was part of the thinking behind the choice of preferred numbers in the ANSI standard):

Pitch (inches) Pitch expressed
in eighths
ANSI standard
chain number
Width (inches)
14 28 25 18
38 38 35 316
12 48 41 14
12 48 40 516
58 58 50 38
34 68 60 12
1 88 80 58

Notes:
1. The pitch is the distance between roller centers. The width is the distance between the link plates (i.e. slightly more than the roller width to allow for clearance).
2. The right-hand digit of the standard denotes 0 = normal chain, 1 = lightweight chain, 5 = rollerless bushing chain.
3. The left-hand digit denotes the number of eighths of an inch that make up the pitch.
4. An “H” following the standard number denotes heavyweight chain. A hyphenated number following the standard number denotes double-strand (2), triple-strand (3), and so on. Thus 60H-3 denotes number 60 heavyweight triple-strand chain.
 A typical bicycle chain (for derailleur gears) uses narrow 1⁄2-inch-pitch chain. The width of the chain is variable, and does not affect the load capacity. The more sprockets at the rear wheel (historically 3-6, nowadays 7-12 sprockets), the narrower the chain. Chains are sold according to the number of speeds they are designed to work with, for example, “10 speed chain”. Hub gear or single speed bicycles use 1/2″ x 1/8″ chains, where 1/8″ refers to the maximum thickness of a sprocket that can be used with the chain.

Typically chains with parallel shaped links have an even number of links, with each narrow link followed by a broad one. Chains built up with a uniform type of link, narrow at 1 and broad at the other end, can be made with an odd number of links, which can be an advantage to adapt to a special chainwheel-distance; on the other side such a chain tends to be not so strong.

Roller chains made using ISO standard are sometimes called as isochains.

 

WHY CHOOSE US 

1. Reliable Quality Assurance System
2. Cutting-Edge Computer-Controlled CNC Machines
3. Bespoke Solutions from Highly Experienced Specialists
4. Customization and OEM Available for Specific Application
5. Extensive Inventory of Spare Parts and Accessories
6. Well-Developed CZPT Marketing Network
7. Efficient After-Sale Service System

 

The 219 sets of advanced automatic production equipment provide guarantees for high product quality. The 167 engineers and technicians with senior professional titles can design and develop products to meet the exact demands of customers, and OEM customizations are also available with us. Our sound global service network can provide customers with timely after-sales technical services.

We are not just a manufacturer and supplier, but also an industry consultant. We work pro-actively with you to offer expert advice and product recommendations in order to end up with a most cost effective product available for your specific application. The clients we serve CZPT range from end users to distributors and OEMs. Our OEM replacements can be substituted wherever necessary and suitable for both repair and new assemblies.

 

Shipping Cost:

Estimated freight per unit.



To be negotiated
Usage: Transmission Chain, Drag Chain, Conveyor Chain, Dedicated Special Chain
Material: Stainless steel
Surface Treatment: Polishing
Samples:
US$ 0/Meter
1 Meter(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

bush chain

What are the future trends and advancements in bush chain technology?

The future of bush chain technology is driven by the continuous pursuit of improving performance, reliability, and efficiency. Here are some emerging trends and advancements in bush chain technology:

1. Advanced Materials: Manufacturers are exploring the use of advanced materials such as high-strength alloys, polymers, and composites to enhance the durability and load-carrying capacity of bush chains. These materials offer improved wear resistance, corrosion resistance, and reduced weight.

2. Enhanced Lubrication Systems: Lubrication plays a crucial role in the smooth operation of bush chains. Future advancements aim to develop more efficient lubrication systems that provide better coverage, reduce friction, and extend the chain’s service life. Self-lubricating bush chains are also being developed, eliminating the need for external lubrication.

3. Precision Manufacturing: Advancements in manufacturing technologies, such as computer numerical control (CNC) machining and additive manufacturing, enable the production of bush chains with higher precision and tighter tolerances. This results in improved chain performance, reduced noise, and smoother operation.

4. IoT Integration: The integration of Internet of Things (IoT) technology allows for real-time monitoring of bush chain performance and condition. IoT-enabled sensors can detect wear, fatigue, and other potential issues, enabling predictive maintenance and optimizing chain performance.

5. Intelligent Control Systems: The development of intelligent control systems enables better monitoring and control of bush chain operation. These systems can optimize chain speed, tension, and alignment, leading to improved efficiency and reduced energy consumption.

6. Sustainability and Environmental Considerations: Future advancements in bush chain technology focus on reducing environmental impact. This includes the development of eco-friendly materials, energy-efficient designs, and recyclable chain components.

7. Customization and Modular Design: The trend towards customization and modular design allows for greater flexibility in adapting bush chains to specific application requirements. Modular bush chain systems simplify installation, maintenance, and replacement, reducing downtime and improving overall system efficiency.

These trends and advancements in bush chain technology aim to address industry needs for higher performance, increased reliability, and reduced maintenance, paving the way for more efficient and sustainable industrial applications.

bush chain

How does a bush chain contribute to overall system efficiency?

A bush chain contributes to overall system efficiency in several ways:

1. Power transmission: Bush chains are designed to efficiently transmit power from the driving source to the driven machinery or equipment. They have high tensile strength and can effectively transfer rotational motion, allowing for the efficient transfer of power from the motor or engine to the intended application.

2. Load-bearing capacity: Bush chains are capable of handling heavy loads and are designed to withstand the stresses associated with transmitting power in industrial applications. By efficiently transferring the load, they minimize power losses and reduce the need for additional components or systems.

3. Smooth and reliable operation: Bush chains are constructed with precision-engineered components that work together to provide smooth and reliable operation. They have low friction between the bushings and pins, reducing energy losses and minimizing wear and tear. This results in improved overall system efficiency.

4. Minimal maintenance requirements: Bush chains are designed to operate with minimal maintenance. They have self-lubricating capabilities, reducing the need for frequent lubrication. This not only saves time and resources but also ensures consistent performance and extends the chain’s lifespan.

5. Flexibility and adaptability: Bush chains can be customized and adapted to suit specific application requirements. They are available in various sizes, pitches, and configurations, allowing for easy integration into different systems. This flexibility enhances system efficiency by providing the optimal chain solution for the specific application.

Overall, a properly selected and maintained bush chain contributes to the overall efficiency of a system by minimizing power losses, reducing wear and tear, and providing reliable and smooth operation. It ensures effective power transmission and load-bearing capacity, resulting in improved productivity and reduced downtime.

bush chain

What are the applications of bush chains in industrial settings?

Bush chains, also known as bush roller chains or bushing chains, have a wide range of applications in various industrial settings. Their versatility and durability make them suitable for demanding environments and heavy-duty applications. Here are some common industrial applications of bush chains:

1. Industrial Machinery: Bush chains are used in a wide range of industrial machinery, including conveyors, material handling equipment, packaging machines, printing presses, and textile machinery. They provide reliable power transmission and can handle high loads and continuous operation.

2. Agricultural Equipment: Bush chains are extensively used in agricultural machinery such as tractors, combines, harvesters, and irrigation systems. They facilitate the transfer of power from the engine to various agricultural implements and enable efficient operation in tough farming conditions.

3. Automotive Systems: Bush chains find applications in automotive systems such as timing drives, camshaft drives, and engine oil pumps. They ensure precise synchronization of engine components and reliable power transmission for efficient and smooth operation.

4. Material Handling: Bush chains are commonly used in material handling equipment like forklifts, hoists, and cranes. They enable the lifting and movement of heavy loads and ensure reliable power transmission in demanding industrial environments.

5. Mining and Construction: In the mining and construction industries, bush chains are employed in equipment such as excavators, bulldozers, crushers, and conveyor systems. They can withstand harsh conditions, high loads, and abrasive materials commonly encountered in these industries.

6. Power Transmission: Bush chains are utilized in power transmission systems where torque and speed need to be transferred from one component to another. They are commonly found in power plants, pulp and paper mills, steel mills, and other heavy industrial applications.

7. Food Processing: Bush chains designed for food-grade applications are used in the food processing industry. They comply with strict hygiene and sanitation standards and are resistant to corrosion, allowing for safe and efficient operation in food production lines.

Overall, bush chains play a vital role in numerous industrial applications, providing reliable and efficient power transmission, durability, and resistance to harsh operating conditions. Their adaptability and strength make them a preferred choice in various industrial sectors.

China high quality Short Pitch Precision 80-3 a Series Triplex Roller Chains and Bush Chains  China high quality Short Pitch Precision 80-3 a Series Triplex Roller Chains and Bush Chains
editor by CX 2023-08-07

China high quality Conveyor Belt 20A-2 a Series Short Pitch Precision Duplex Roller Chains and Bush Chains with Link

Product Description

A Series Short Pitch Precision Duplex Roller Chains & Bush Chains

ISO/ANSI/ DIN
Chain No.
Chain No. Pitch

P
mm

Roller diameter

d1max
mm

Width between inner plates
b1min
mm
Pin diameter

d2max
mm

Pin length Inner plate depth
h2max
mm
Plate thickness

Tmax
mm

Transverse                     Pt 
mm
Tensile strength

Qmin
kN/lbf

Average tensile strength
Q0
kN
Weight per meter
q  
kg/m
Lmax
mm
Lcmax
mm
100-2 20A-2 31.750 19.05 18.90 9.53 76.4 80.5 30.00 4.00 35.76 177.00/45717 215.2 7.80

*Bush chain: d1 in the table indicates the external diameter of the bush

ROLLER CHAIN

Roller chain or bush roller chain is the type of chain drive most commonly used for transmission of mechanical power on many kinds of domestic, industrial and agricultural machinery, including conveyors, wire- and tube-drawing machines, printing presses, cars, motorcycles, and bicycles. It consists of a series of short cylindrical rollers held together by side links. It is driven by a toothed wheel called a sprocket. It is a simple, reliable, and efficient means of power transmission.

CONSTRUCTION OF THE CHAIN

Two different sizes of roller chain, showing construction.
There are 2 types of links alternating in the bush roller chain. The first type is inner links, having 2 inner plates held together by 2 sleeves or bushings CZPT which rotate 2 rollers. Inner links alternate with the second type, the outer links, consisting of 2 outer plates held together by pins passing through the bushings of the inner links. The “bushingless” roller chain is similar in operation though not in construction; instead of separate bushings or sleeves holding the inner plates together, the plate has a tube stamped into it protruding from the hole which serves the same purpose. This has the advantage of removing 1 step in assembly of the chain.

The roller chain design reduces friction compared to simpler designs, resulting in higher efficiency and less wear. The original power transmission chain varieties lacked rollers and bushings, with both the inner and outer plates held by pins which directly contacted the sprocket teeth; however this configuration exhibited extremely rapid wear of both the sprocket teeth, and the plates where they pivoted on the pins. This problem was partially solved by the development of bushed chains, with the pins holding the outer plates passing through bushings or sleeves connecting the inner plates. This distributed the wear over a greater area; however the teeth of the sprockets still wore more rapidly than is desirable, from the sliding friction against the bushings. The addition of rollers surrounding the bushing sleeves of the chain and provided rolling contact with the teeth of the sprockets resulting in excellent resistance to wear of both sprockets and chain as well. There is even very low friction, as long as the chain is sufficiently lubricated. Continuous, clean, lubrication of roller chains is of primary importance for efficient operation as well as correct tensioning.

LUBRICATION

Many driving chains (for example, in factory equipment, or driving a camshaft inside an internal combustion engine) operate in clean environments, and thus the wearing surfaces (that is, the pins and bushings) are safe from precipitation and airborne grit, many even in a sealed environment such as an oil bath. Some roller chains are designed to have o-rings built into the space between the outside link plate and the inside roller link plates. Chain manufacturers began to include this feature in 1971 after the application was invented by Joseph Montano while working for Whitney Chain of Hartford, Connecticut. O-rings were included as a way to improve lubrication to the links of power transmission chains, a service that is vitally important to extending their working life. These rubber fixtures form a barrier that holds factory applied lubricating grease inside the pin and bushing wear areas. Further, the rubber o-rings prevent dirt and other contaminants from entering inside the chain linkages, where such particles would otherwise cause significant wear.[citation needed]

There are also many chains that have to operate in dirty conditions, and for size or operational reasons cannot be sealed. Examples include chains on farm equipment, bicycles, and chain saws. These chains will necessarily have relatively high rates of wear, particularly when the operators are prepared to accept more friction, less efficiency, more noise and more frequent replacement as they neglect lubrication and adjustment.

Many oil-based lubricants attract dirt and other particles, eventually forming an CZPT paste that will compound wear on chains. This problem can be circumvented by use of a “dry” PTFE spray, which forms a solid film after application and repels both particles and moisture.

VARIANTS DESIGN

Layout of a roller chain: 1. Outer plate, 2. Inner plate, 3. Pin, 4. Bushing, 5. Roller
If the chain is not being used for a high wear application (for instance if it is just transmitting motion from a hand-operated lever to a control shaft on a machine, or a sliding door on an oven), then 1 of the simpler types of chain may still be used. Conversely, where extra strength but the smooth drive of a smaller pitch is required, the chain may be “siamesed”; instead of just 2 rows of plates on the outer sides of the chain, there may be 3 (“duplex”), 4 (“triplex”), or more rows of plates running parallel, with bushings and rollers between each adjacent pair, and the same number of rows of teeth running in parallel on the sprockets to match. Timing chains on automotive engines, for example, typically have multiple rows of plates called strands.

Roller chain is made in several sizes, the most common American National Standards Institute (ANSI) standards being 40, 50, 60, and 80. The first digit(s) indicate the pitch of the chain in eighths of an inch, with the last digit being 0 for standard chain, 1 for lightweight chain, and 5 for bushed chain with no rollers. Thus, a chain with half-inch pitch would be a #40 while a #160 sprocket would have teeth spaced 2 inches apart, etc. Metric pitches are expressed in sixteenths of an inch; thus a metric #8 chain (08B-1) would be equivalent to an ANSI #40. Most roller chain is made from plain carbon or alloy steel, but stainless steel is used in food processing machinery or other places where lubrication is a problem, and nylon or brass are occasionally seen for the same reason.

Roller chain is ordinarily hooked up using a master link (also known as a connecting link), which typically has 1 pin held by a horseshoe clip rather than friction fit, allowing it to be inserted or removed with simple tools. Chain with a removable link or pin is also known as cottered chain, which allows the length of the chain to be adjusted. Half links (also known as offsets) are available and are used to increase the length of the chain by a single roller. Riveted roller chain has the master link (also known as a connecting link) “riveted” or mashed on the ends. These pins are made to be durable and are not removable.

USE

An example of 2 ‘ghost’ sprockets tensioning a triplex roller chain system
Roller chains are used in low- to mid-speed drives at around 600 to 800 feet per minute; however, at higher speeds, around 2,000 to 3,000 feet per minute, V-belts are normally used due to wear and noise issues.
A bicycle chain is a form of roller chain. Bicycle chains may have a master link, or may require a chain tool for removal and installation. A similar but larger and thus stronger chain is used on most motorcycles although it is sometimes replaced by either a toothed belt or a shaft drive, which offer lower noise level and fewer maintenance requirements.
The great majority of automobile engines use roller chains to drive the camshaft(s). Very high performance engines often use gear drive, and starting in the early 1960s toothed belts were used by some manufacturers.
Chains are also used in forklifts using hydraulic rams as a pulley to raise and lower the carriage; however, these chains are not considered roller chains, but are classified as lift or leaf chains.
Chainsaw cutting chains superficially resemble roller chains but are more closely related to leaf chains. They are driven by projecting drive links which also serve to locate the chain CZPT the bar.

Sea Harrier FA.2 ZA195 front (cold) vector thrust nozzle – the nozzle is rotated by a chain drive from an air motor
A perhaps unusual use of a pair of motorcycle chains is in the Harrier Jump Jet, where a chain drive from an air motor is used to rotate the movable engine nozzles, allowing them to be pointed downwards for hovering flight, or to the rear for normal CZPT flight, a system known as Thrust vectoring.

WEAR

 

The effect of wear on a roller chain is to increase the pitch (spacing of the links), causing the chain to grow longer. Note that this is due to wear at the pivoting pins and bushes, not from actual stretching of the metal (as does happen to some flexible steel components such as the hand-brake cable of a motor vehicle).

With modern chains it is unusual for a chain (other than that of a bicycle) to wear until it breaks, since a worn chain leads to the rapid onset of wear on the teeth of the sprockets, with ultimate failure being the loss of all the teeth on the sprocket. The sprockets (in particular the smaller of the two) suffer a grinding motion that puts a characteristic hook shape into the driven face of the teeth. (This effect is made worse by a chain improperly tensioned, but is unavoidable no matter what care is taken). The worn teeth (and chain) no longer provides smooth transmission of power and this may become evident from the noise, the vibration or (in car engines using a timing chain) the variation in ignition timing seen with a timing light. Both sprockets and chain should be replaced in these cases, since a new chain on worn sprockets will not last long. However, in less severe cases it may be possible to save the larger of the 2 sprockets, since it is always the smaller 1 that suffers the most wear. Only in very light-weight applications such as a bicycle, or in extreme cases of improper tension, will the chain normally jump off the sprockets.

The lengthening due to wear of a chain is calculated by the following formula:

M = the length of a number of links measured

S = the number of links measured

P = Pitch

In industry, it is usual to monitor the movement of the chain tensioner (whether manual or automatic) or the exact length of a drive chain (one rule of thumb is to replace a roller chain which has elongated 3% on an adjustable drive or 1.5% on a fixed-center drive). A simpler method, particularly suitable for the cycle or motorcycle user, is to attempt to pull the chain away from the larger of the 2 sprockets, whilst ensuring the chain is taut. Any significant movement (e.g. making it possible to see through a gap) probably indicates a chain worn up to and beyond the limit. Sprocket damage will result if the problem is ignored. Sprocket wear cancels this effect, and may mask chain wear.

CHAIN STRENGTH

The most common measure of roller chain’s strength is tensile strength. Tensile strength represents how much load a chain can withstand under a one-time load before breaking. Just as important as tensile strength is a chain’s fatigue strength. The critical factors in a chain’s fatigue strength is the quality of steel used to manufacture the chain, the heat treatment of the chain components, the quality of the pitch hole fabrication of the linkplates, and the type of shot plus the intensity of shot peen coverage on the linkplates. Other factors can include the thickness of the linkplates and the design (contour) of the linkplates. The rule of thumb for roller chain operating on a continuous drive is for the chain load to not exceed a mere 1/6 or 1/9 of the chain’s tensile strength, depending on the type of master links used (press-fit vs. slip-fit)[citation needed]. Roller chains operating on a continuous drive beyond these thresholds can and typically do fail prematurely via linkplate fatigue failure.

The standard minimum ultimate strength of the ANSI 29.1 steel chain is 12,500 x (pitch, in inches)2. X-ring and O-Ring chains greatly decrease wear by means of internal lubricants, increasing chain life. The internal lubrication is inserted by means of a vacuum when riveting the chain together.

CHAIN STHangZhouRDS

Standards organizations (such as ANSI and ISO) maintain standards for design, dimensions, and interchangeability of transmission chains. For example, the following Table shows data from ANSI standard B29.1-2011 (Precision Power Transmission Roller Chains, Attachments, and Sprockets) developed by the American Society of Mechanical Engineers (ASME). See the references[8][9][10] for additional information.

ASME/ANSI B29.1-2011 Roller Chain Standard SizesSizePitchMaximum Roller DiameterMinimum Ultimate Tensile StrengthMeasuring Load25

ASME/ANSI B29.1-2011 Roller Chain Standard Sizes
Size Pitch Maximum Roller Diameter Minimum Ultimate Tensile Strength Measuring Load
25 0.250 in (6.35 mm) 0.130 in (3.30 mm) 780 lb (350 kg) 18 lb (8.2 kg)
35 0.375 in (9.53 mm) 0.200 in (5.08 mm) 1,760 lb (800 kg) 18 lb (8.2 kg)
41 0.500 in (12.70 mm) 0.306 in (7.77 mm) 1,500 lb (680 kg) 18 lb (8.2 kg)
40 0.500 in (12.70 mm) 0.312 in (7.92 mm) 3,125 lb (1,417 kg) 31 lb (14 kg)
50 0.625 in (15.88 mm) 0.400 in (10.16 mm) 4,880 lb (2,210 kg) 49 lb (22 kg)
60 0.750 in (19.05 mm) 0.469 in (11.91 mm) 7,030 lb (3,190 kg) 70 lb (32 kg)
80 1.000 in (25.40 mm) 0.625 in (15.88 mm) 12,500 lb (5,700 kg) 125 lb (57 kg)
100 1.250 in (31.75 mm) 0.750 in (19.05 mm) 19,531 lb (8,859 kg) 195 lb (88 kg)
120 1.500 in (38.10 mm) 0.875 in (22.23 mm) 28,125 lb (12,757 kg) 281 lb (127 kg)
140 1.750 in (44.45 mm) 1.000 in (25.40 mm) 38,280 lb (17,360 kg) 383 lb (174 kg)
160 2.000 in (50.80 mm) 1.125 in (28.58 mm) 50,000 lb (23,000 kg) 500 lb (230 kg)
180 2.250 in (57.15 mm) 1.460 in (37.08 mm) 63,280 lb (28,700 kg) 633 lb (287 kg)
200 2.500 in (63.50 mm) 1.562 in (39.67 mm) 78,175 lb (35,460 kg) 781 lb (354 kg)
240 3.000 in (76.20 mm) 1.875 in (47.63 mm) 112,500 lb (51,000 kg) 1,000 lb (450 kg

For mnemonic purposes, below is another presentation of key dimensions from the same standard, expressed in fractions of an inch (which was part of the thinking behind the choice of preferred numbers in the ANSI standard):

Pitch (inches) Pitch expressed
in eighths
ANSI standard
chain number
Width (inches)
14 28 25 18
38 38 35 316
12 48 41 14
12 48 40 516
58 58 50 38
34 68 60 12
1 88 80 58

Notes:
1. The pitch is the distance between roller centers. The width is the distance between the link plates (i.e. slightly more than the roller width to allow for clearance).
2. The right-hand digit of the standard denotes 0 = normal chain, 1 = lightweight chain, 5 = rollerless bushing chain.
3. The left-hand digit denotes the number of eighths of an inch that make up the pitch.
4. An “H” following the standard number denotes heavyweight chain. A hyphenated number following the standard number denotes double-strand (2), triple-strand (3), and so on. Thus 60H-3 denotes number 60 heavyweight triple-strand chain.
 A typical bicycle chain (for derailleur gears) uses narrow 1⁄2-inch-pitch chain. The width of the chain is variable, and does not affect the load capacity. The more sprockets at the rear wheel (historically 3-6, nowadays 7-12 sprockets), the narrower the chain. Chains are sold according to the number of speeds they are designed to work with, for example, “10 speed chain”. Hub gear or single speed bicycles use 1/2″ x 1/8″ chains, where 1/8″ refers to the maximum thickness of a sprocket that can be used with the chain.

Typically chains with parallel shaped links have an even number of links, with each narrow link followed by a broad one. Chains built up with a uniform type of link, narrow at 1 and broad at the other end, can be made with an odd number of links, which can be an advantage to adapt to a special chainwheel-distance; on the other side such a chain tends to be not so strong.

Roller chains made using ISO standard are sometimes called as isochains.

 

WHY CHOOSE US 

1. Reliable Quality Assurance System
2. Cutting-Edge Computer-Controlled CNC Machines
3. Bespoke Solutions from Highly Experienced Specialists
4. Customization and OEM Available for Specific Application
5. Extensive Inventory of Spare Parts and Accessories
6. Well-Developed CZPT Marketing Network
7. Efficient After-Sale Service System

 

The 219 sets of advanced automatic production equipment provide guarantees for high product quality. The 167 engineers and technicians with senior professional titles can design and develop products to meet the exact demands of customers, and OEM customizations are also available with us. Our sound global service network can provide customers with timely after-sales technical services.

We are not just a manufacturer and supplier, but also an industry consultant. We work pro-actively with you to offer expert advice and product recommendations in order to end up with a most cost effective product available for your specific application. The clients we serve CZPT range from end users to distributors and OEMs. Our OEM replacements can be substituted wherever necessary and suitable for both repair and new assemblies.

 

 

 

Shipping Cost:

Estimated freight per unit.



To be negotiated
Standard or Nonstandard: Standard
Application: Textile Machinery, Garment Machinery, Conveyer Equipment, Packaging Machinery, Electric Cars, Motorcycle, Food Machinery, Marine, Mining Equipment, Agricultural Machinery, Car, Food and Beverage Industry, Motorcycle Parts
Surface Treatment: Polishing
Samples:
US$ 0/Meter
1 Meter(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

bush chain

What are the safety precautions when working with bush chains?

Working with bush chains requires adherence to certain safety precautions to ensure the well-being of operators and prevent accidents. Here are some important safety measures to consider:

1. Personal protective equipment (PPE): Operators should wear appropriate PPE, including safety glasses, gloves, and protective clothing, to protect themselves from potential hazards such as flying debris, pinching, or entanglement.

2. Training and knowledge: Operators should be properly trained in the operation and maintenance of bush chains. They should have a thorough understanding of the equipment, including its components, functions, and potential hazards. Training should cover safe operating procedures, including start-up, shutdown, and emergency procedures.

3. Lockout/tagout procedures: Before performing any maintenance or repair work on a bush chain, proper lockout/tagout procedures should be followed. This involves isolating the power source, de-energizing the equipment, and securing it with lockout devices or tags to prevent accidental startup.

4. Regular inspections: Regular inspections should be conducted to identify any signs of wear, damage, or misalignment in the bush chain. This includes checking for loose bolts, worn sprockets, damaged links, or any other issues that could compromise the chain’s integrity. Any identified problems should be promptly addressed to prevent further damage or accidents.

5. Proper lifting and handling: When handling bush chains, proper lifting techniques should be employed to prevent strain or injury. Chains should be lifted using appropriate lifting equipment, and operators should avoid placing themselves in a position where they could be caught between moving parts.

6. Clean and well-maintained work environment: The work area should be clean, well-lit, and free from clutter or obstructions. This ensures that operators have clear visibility and can safely access the bush chain without tripping or other hazards.

7. Follow manufacturer guidelines: It is important to follow the manufacturer’s guidelines and recommendations for the safe use, maintenance, and inspection of the specific bush chain being used. This includes following recommended lubrication practices, tensioning guidelines, and any other instructions provided by the manufacturer.

By adhering to these safety precautions, operators can mitigate potential risks associated with working with bush chains and ensure a safe working environment for themselves and others involved in the operation and maintenance of the equipment.

bush chain

Can a bush chain be retrofitted into an existing system?

Yes, a bush chain can be retrofitted into an existing system in many cases. Retrofits are common when there is a need to upgrade or replace the existing chain with a more efficient or higher-quality option. The process of retrofitting a bush chain typically involves the following steps:

1. Evaluation of the existing system: The first step is to assess the existing system and determine if a bush chain can be installed. Factors such as space availability, compatibility with existing components, and load requirements need to be considered.

2. Selection of the appropriate bush chain: Once the system has been evaluated, the next step is to select the appropriate bush chain for the retrofit. This involves considering factors such as pitch, size, strength, and material compatibility to ensure a proper fit and optimal performance.

3. Modification of the system: Depending on the design of the existing system, some modifications may be required to accommodate the bush chain. This could involve adjusting the sprockets, modifying the chain guides, or making other necessary changes to ensure proper alignment and tensioning.

4. Installation of the bush chain: Once the modifications have been made, the bush chain can be installed into the existing system. This typically involves removing the old chain and replacing it with the new bush chain. Proper tensioning and alignment should be ensured during the installation process.

5. Testing and adjustments: After the bush chain is installed, it is important to conduct thorough testing to ensure proper operation. This includes checking for smooth movement, correct tension, and proper engagement with the sprockets. Any necessary adjustments should be made to optimize performance.

It is important to note that the feasibility of retrofitting a bush chain into an existing system depends on the specific requirements and design of the system. In some cases, additional modifications or adaptations may be needed to ensure compatibility and performance. Consulting with a qualified engineer or chain manufacturer can help determine the best approach for retrofitting a bush chain into an existing system.

bush chain

What is a bush chain and how does it work?

A bush chain, also known as a bush roller chain or a bushing chain, is a type of roller chain commonly used in mechanical power transmission systems. It consists of a series of interconnected links, known as bushings, that are joined together by pins. The bushings are cylindrical metal sleeves with internal bearings that rotate on the pins.

The working principle of a bush chain is based on the interaction between the rotating bushings and the teeth of the sprockets. The chain is wrapped around two or more sprockets, with one sprocket being the driver and the other(s) being the driven. As the driver sprocket rotates, it pulls the chain, causing the bushings to rotate on the pins.

Each bushing has an outer surface that comes into contact with the sprocket teeth. The engagement between the sprocket teeth and the bushings’ outer surface creates the driving force, allowing power to be transmitted from the driver sprocket to the driven sprocket(s). This rotational motion transfers torque and enables the movement of various mechanical components or systems connected to the driven sprocket(s).

The bush chain design provides several advantages, including high tensile strength, flexibility, and the ability to transmit power over long distances. The bushings and pins are typically made of hardened steel to ensure durability and resistance to wear. Lubrication is essential to reduce friction and prevent premature wear of the bushings and pins.

Bush chains are widely used in various applications, such as industrial machinery, agricultural equipment, automotive systems, and conveyor systems. They are favored for their reliability, efficiency, and ease of installation. Proper maintenance, including regular lubrication and tension adjustment, is necessary to ensure the smooth operation and longevity of a bush chain.

China high quality Conveyor Belt 20A-2 a Series Short Pitch Precision Duplex Roller Chains and Bush Chains with Link  China high quality Conveyor Belt 20A-2 a Series Short Pitch Precision Duplex Roller Chains and Bush Chains with Link
editor by CX 2023-07-28

China Professional High Quality Duplex Stainless Steel Industrial Short Pitch Roller Chains and Bush Chain

Product Description

Chain No.

Pitch

P
mm

Roller diameter

d1max
mm

Width between inner plates
b1min
mm
Pin diameter

d2max
mm

Pin length Inner plate depth
h2max
mm
Plate thickness

t/Tmax
mm

Transverse pitch

Pt
mm

Breaking load

Q
kN/lbf

Weight per meter
q kg/m
Lmax
mm
Lcmax
mm
*04CSS-2 6.350 3.30 3.18 2.31 14.50 15.00 6.00 0.80 6.40 5.0/1124 0.28
*06CSS-2 9.525 5.08 4.77 3.58 22.50 23.30 9.00 1.30 10.13 11.0/2473 0.70
08ASS-2 12.700 7.95 7.85 3.96 31.00 32.20 12.00 1.50 14.38 19.2/4316 1.30
41SS-2 12.700 7.77 6.25 3.53 25.70 26.90 9.91 1.30 11.95 12.0/2698 0.91
10ASS-2 15.875 10.16 9.40 5.08 38.90 40.40 15.09 2.03 18.11 30.4/6834 2.18
12ASS-2 19.050 11.91 12.57 5.94 48.80 50.50 18.00 2.42 22.78 43.4/9757 2.92
16ASS-2 25.400 15.88 15.75 7.92 62.70 64.30 24.00 3.25 29.29 77.8/17490 5.15
20ASS-2 31.750 19.05 18.90 9.53 76.40 80.50 30.00 4.00 35.76 120.0/26977 7.80
24ASS-2 38.100 22.23 25.22 11.10 95.80 99.70 35.70 4.80 45.44 150.0/33720 11.70
28ASS-2 44.450 25.40 25.22 12.70 103.30 107.90 41.00 5.60 48.87 204.0/45859 15.14
32ASS-2 50.800 28.58 31.55 14.27 123.30 128.10 47.80 6.40 58.55 267.6/60156 20.14
04BSS-2 6.000 4.00 2.80 1.85 12.30 13.30 5.00 0.60 5.50 4.0/899 0.22
05BSS-2 8.000 5.00 3.00 2.31 13.90 14.50 7.10 0.80 5.64 6.2/1394 0.37
#06BSS-2 9.525 6.35 5.72 3.28 23.40 24.40 8.20 1.30 10.24 11.8/2653 0.87
08BSS-2 12.700 8.51 7.75 4.45 31.00 32.20 11.80 1.60 13.92 21.0/4721 1.40
10BSS-2 15.875 10.16 9.65 5.08 36.10 37.50 14.70 1.70 16.59 29.1/6542 1.96
12BSS-2 19.050 12.07 11.68 5.72 42.00 43.60 16.00 1.85 19.46 37.0/8318 2.46
16BSS-2 25.400 15.88 17.02 8.28 68.00 71.00 21.00 4.15/3.10 31.88 70.7/15894 5.42
20BSS-2 31.750 19.05 19.56 10.19 77.80 81.50 26.40 4.50/3.50 36.45 105.6/23740 7.87
24BSS-2 38.100 25.40 25.40 14.63 101.70 106.20 33.20 6.00/4.80 48.36 182.0/4571 12.43
28BSS-2 44.450 27.94 30.99 15.90 124.60 129.10 36.70 7.50/6.00 59.56 216.0/48557 16.60
32BSS-2 50.800 29.21 30.99 17.81 124.60 129.60 42.00 7.00/6.00 58.55 270.0/60698 20.34

*Bush chain:d1 in the table indicates the external diameter of the bush
*Straight side plates
Stainless steel chains are suitable for corrosive conditions involving food,chemicals pharmaceuticals,etc.and also suitable for high and low temperature conditions.

Roller chain
Roller chain or bush roller chain is the type of chain drive most commonly used for transmission of mechanical power on many kinds of domestic, industrial and agricultural machinery, including conveyors, wire- and tube-drawing machines, printing presses, cars, motorcycles, and bicycles. It consists of a series of short cylindrical rollers held together by side links. It is driven by a toothed wheel called a sprocket. It is a simple, reliable, and efficient[1] means of power transmission.

Though CZPT Renold is credited with inventing the roller chain in 1880, sketches by Leonardo da Vinci in the 16th century show a chain with a roller bearing.

Construction of the chain
Two different sizes of roller chain, showing construction.
There are 2 types of links alternating in the bush roller chain. The first type is inner links, having 2 inner plates held together by 2 sleeves or bushings CZPT which rotate 2 rollers. Inner links alternate with the second type, the outer links, consisting of 2 outer plates held together by pins passing through the bushings of the inner links. The “bushingless” roller chain is similar in operation though not in construction; instead of separate bushings or sleeves holding the inner plates together, the plate has a tube stamped into it protruding from the hole which serves the same purpose. This has the advantage of removing 1 step in assembly of the chain.

The roller chain design reduces friction compared to simpler designs, resulting in higher efficiency and less wear. The original power transmission chain varieties lacked rollers and bushings, with both the inner and outer plates held by pins which directly contacted the sprocket teeth; however this configuration exhibited extremely rapid wear of both the sprocket teeth, and the plates where they pivoted on the pins. This problem was partially solved by the development of bushed chains, with the pins holding the outer plates passing through bushings or sleeves connecting the inner plates. This distributed the wear over a greater area; however the teeth of the sprockets still wore more rapidly than is desirable, from the sliding friction against the bushings. The addition of rollers surrounding the bushing sleeves of the chain and provided rolling contact with the teeth of the sprockets resulting in excellent resistance to wear of both sprockets and chain as well. There is even very low friction, as long as the chain is sufficiently lubricated. Continuous, clean, lubrication of roller chains is of primary importance for efficient operation as well as correct tensioning.

Lubrication
Many driving chains (for example, in factory equipment, or driving a camshaft inside an internal combustion engine) operate in clean environments, and thus the wearing surfaces (that is, the pins and bushings) are safe from precipitation and airborne grit, many even in a sealed environment such as an oil bath. Some roller chains are designed to have o-rings built into the space between the outside link plate and the inside roller link plates. Chain manufacturers began to include this feature in 1971 after the application was invented by Joseph Montano while working for Whitney Chain of Hartford, Connecticut. O-rings were included as a way to improve lubrication to the links of power transmission chains, a service that is vitally important to extending their working life. These rubber fixtures form a barrier that holds factory applied lubricating grease inside the pin and bushing wear areas. Further, the rubber o-rings prevent dirt and other contaminants from entering inside the chain linkages, where such particles would otherwise cause significant wear.[citation needed]

There are also many chains that have to operate in dirty conditions, and for size or operational reasons cannot be sealed. Examples include chains on farm equipment, bicycles, and chain saws. These chains will necessarily have relatively high rates of wear, particularly when the operators are prepared to accept more friction, less efficiency, more noise and more frequent replacement as they neglect lubrication and adjustment.

Many oil-based lubricants attract dirt and other particles, eventually forming an CZPT paste that will compound wear on chains. This problem can be circumvented by use of a “dry” PTFE spray, which forms a solid film after application and repels both particles and moisture.
Variants in design

Layout of a roller chain: 1. Outer plate, 2. Inner plate, 3. Pin, 4. Bushing, 5. Roller
If the chain is not being used for a high wear application (for instance if it is just transmitting motion from a hand-operated lever to a control shaft on a machine, or a sliding door on an oven), then 1 of the simpler types of chain may still be used. Conversely, where extra strength but the smooth drive of a smaller pitch is required, the chain may be “siamesed”; instead of just 2 rows of plates on the outer sides of the chain, there may be 3 (“duplex”), 4 (“triplex”), or more rows of plates running parallel, with bushings and rollers between each adjacent pair, and the same number of rows of teeth running in parallel on the sprockets to match. Timing chains on automotive engines, for example, typically have multiple rows of plates called strands.

Roller chain is made in several sizes, the most common American National Standards Institute (ANSI) standards being 40, 50, 60, and 80. The first digit(s) indicate the pitch of the chain in eighths of an inch, with the last digit being 0 for standard chain, 1 for lightweight chain, and 5 for bushed chain with no rollers. Thus, a chain with half-inch pitch would be a #40 while a #160 sprocket would have teeth spaced 2 inches apart, etc. Metric pitches are expressed in sixteenths of an inch; thus a metric #8 chain (08B-1) would be equivalent to an ANSI #40. Most roller chain is made from plain carbon or alloy steel, but stainless steel is used in food processing machinery or other places where lubrication is a problem, and nylon or brass are occasionally seen for the same reason.

Roller chain is ordinarily hooked up using a master link (also known as a connecting link), which typically has 1 pin held by a horseshoe clip rather than friction fit, allowing it to be inserted or removed with simple tools. Chain with a removable link or pin is also known as cottered chain, which allows the length of the chain to be adjusted. Half links (also known as offsets) are available and are used to increase the length of the chain by a single roller. Riveted roller chain has the master link (also known as a connecting link) “riveted” or mashed on the ends. These pins are made to be durable and are not removable.

Use

An example of 2 ‘ghost’ sprockets tensioning a triplex roller chain system
Roller chains are used in low- to mid-speed drives at around 600 to 800 feet per minute; however, at higher speeds, around 2,000 to 3,000 feet per minute, V-belts are normally used due to wear and noise issues.
A bicycle chain is a form of roller chain. Bicycle chains may have a master link, or may require a chain tool for removal and installation. A similar but larger and thus stronger chain is used on most motorcycles although it is sometimes replaced by either a toothed belt or a shaft drive, which offer lower noise level and fewer maintenance requirements.
The great majority of automobile engines use roller chains to drive the camshaft(s). Very high performance engines often use gear drive, and starting in the early 1960s toothed belts were used by some manufacturers.
Chains are also used in forklifts using hydraulic rams as a pulley to raise and lower the carriage; however, these chains are not considered roller chains, but are classified as lift or leaf chains.
Chainsaw cutting chains superficially resemble roller chains but are more closely related to leaf chains. They are driven by projecting drive links which also serve to locate the chain CZPT the bar.

Sea Harrier FA.2 ZA195 front (cold) vector thrust nozzle – the nozzle is rotated by a chain drive from an air motor
A perhaps unusual use of a pair of motorcycle chains is in the Harrier Jump Jet, where a chain drive from an air motor is used to rotate the movable engine nozzles, allowing them to be pointed downwards for hovering flight, or to the rear for normal CZPT flight, a system known as Thrust vectoring.
 

Wear

The effect of wear on a roller chain is to increase the pitch (spacing of the links), causing the chain to grow longer. Note that this is due to wear at the pivoting pins and bushes, not from actual stretching of the metal (as does happen to some flexible steel components such as the hand-brake cable of a motor vehicle).

With modern chains it is unusual for a chain (other than that of a bicycle) to wear until it breaks, since a worn chain leads to the rapid onset of wear on the teeth of the sprockets, with ultimate failure being the loss of all the teeth on the sprocket. The sprockets (in particular the smaller of the two) suffer a grinding motion that puts a characteristic hook shape into the driven face of the teeth. (This effect is made worse by a chain improperly tensioned, but is unavoidable no matter what care is taken). The worn teeth (and chain) no longer provides smooth transmission of power and this may become evident from the noise, the vibration or (in car engines using a timing chain) the variation in ignition timing seen with a timing light. Both sprockets and chain should be replaced in these cases, since a new chain on worn sprockets will not last long. However, in less severe cases it may be possible to save the larger of the 2 sprockets, since it is always the smaller 1 that suffers the most wear. Only in very light-weight applications such as a bicycle, or in extreme cases of improper tension, will the chain normally jump off the sprockets.

The lengthening due to wear of a chain is calculated by the

M = the length of a number of links measured

S = the number of links measured

P = Pitch

In industry, it is usual to monitor the movement of the chain tensioner (whether manual or automatic) or the exact length of a drive chain (one rule of thumb is to replace a roller chain which has elongated 3% on an adjustable drive or 1.5% on a fixed-center drive). A simpler method, particularly suitable for the cycle or motorcycle user, is to attempt to pull the chain away from the larger of the 2 sprockets, whilst ensuring the chain is taut. Any significant movement (e.g. making it possible to see through a gap) probably indicates a chain worn up to and beyond the limit. Sprocket damage will result if the problem is ignored. Sprocket wear cancels this effect, and may mask chain wear.

Chain strength

The most common measure of roller chain’s strength is tensile strength. Tensile strength represents how much load a chain can withstand under a one-time load before breaking. Just as important as tensile strength is a chain’s fatigue strength. The critical factors in a chain’s fatigue strength is the quality of steel used to manufacture the chain, the heat treatment of the chain components, the quality of the pitch hole fabrication of the linkplates, and the type of shot plus the intensity of shot peen coverage on the linkplates. Other factors can include the thickness of the linkplates and the design (contour) of the linkplates. The rule of thumb for roller chain operating on a continuous drive is for the chain load to not exceed a mere 1/6 or 1/9 of the chain’s tensile strength, depending on the type of master links used (press-fit vs. slip-fit)[citation needed]. Roller chains operating on a continuous drive beyond these thresholds can and typically do fail prematurely via linkplate fatigue failure.

The standard minimum ultimate strength of the ANSI 29.1 steel chain is 12,500 x (pitch, in inches)2. X-ring and O-Ring chains greatly decrease wear by means of internal lubricants, increasing chain life. The internal lubrication is inserted by means of a vacuum when riveting the chain together.

Chain standards

Standards organizations (such as ANSI and ISO) maintain standards for design, dimensions, and interchangeability of transmission chains. For example, the following Table shows data from ANSI standard B29.1-2011 (Precision Power Transmission Roller Chains, Attachments, and Sprockets) developed by the American Society of Mechanical Engineers (ASME). See the references[8][9][10] for additional information.

ASME/ANSI B29.1-2011 Roller Chain Standard SizesSizePitchMaximum Roller DiameterMinimum Ultimate Tensile StrengthMeasuring Load25.

For mnemonic purposes, below is another presentation of key dimensions from the same standard, expressed in fractions of an inch (which was part of the thinking behind the choice of preferred numbers in the ANSI standard):

Notes:
1. The pitch is the distance between roller centers. The width is the distance between the link plates (i.e. slightly more than the roller width to allow for clearance).
2. The right-hand digit of the standard denotes 0 = normal chain, 1 = lightweight chain, 5 = rollerless bushing chain.
3. The left-hand digit denotes the number of eighths of an inch that make up the pitch.
4. An “H” following the standard number denotes heavyweight chain. A hyphenated number following the standard number denotes double-strand (2), triple-strand (3), and so on. Thus 60H-3 denotes number 60 heavyweight triple-strand chain.
 A typical bicycle chain (for derailleur gears) uses narrow 1⁄2-inch-pitch chain. The width of the chain is variable, and does not affect the load capacity. The more sprockets at the rear wheel (historically 3-6, nowadays 7-12 sprockets), the narrower the chain. Chains are sold according to the number of speeds they are designed to work with, for example, “10 speed chain”. Hub gear or single speed bicycles use 1/2″ x 1/8″ chains, where 1/8″ refers to the maximum thickness of a sprocket that can be used with the chain.

Typically chains with parallel shaped links have an even number of links, with each narrow link followed by a broad one. Chains built up with a uniform type of link, narrow at 1 and broad at the other end, can be made with an odd number of links, which can be an advantage to adapt to a special chainwheel-distance; on the other side such a chain tends to be not so strong.

Roller chains made using ISO standard are sometimes called as isochains.

Our Certificates
Market Network

Why Choose Us
1.     Reliable Quality Assurance System
2.     Cutting-Edge Computer-Controlled CNC Machines
3.     Bespoke Solutions from Highly Experienced Specialists 
4.     Customization and OEM Available for Specific Application
5.     Extensive Inventory of Spare Parts and Accessories
6.     Well-Developed CZPT Marketing Network 
7.     Efficient After-Sale Service System

 

 

Standard or Nonstandard: Standard, Standard
Application: Textile Machinery, Garment Machinery, Electric Cars, Motorcycle, Food Machinery, Agricultural Machinery, Textile Machinery, Garment Machinery, Conveyer Equipment, Packaging Machinery, Electric Cars, Motorcycle, Food Machinery, Marine, Mining Equipment, Agricultural Machinery, Car, Food and Beverage Industry, Motorcycle Parts
Surface Treatment: Polishing, Polishing
Structure: Roller Chain, Rotransmission Chain, Pulling Chain, Driving Chain
Material: Stainless Steel, Rubber
Type: Bush Chain, Transmission Chain, Pulling Chain, Driving Chain
Samples:
US$ 0/Meter
1 Meter(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

bush chain

What are the benefits of using a plastic bush chain?

Plastic bush chains offer several advantages in various industrial applications. Here are some benefits of using a plastic bush chain:

1. Corrosion Resistance: Plastic bush chains are highly resistant to corrosion, making them ideal for use in humid or corrosive environments. Unlike metal chains, plastic chains do not rust or deteriorate when exposed to moisture, chemicals, or certain harsh conditions.

2. Lightweight: Plastic bush chains are significantly lighter than their metal counterparts. This lightweight nature reduces the overall weight of the system, making it easier to handle and operate. It also minimizes the load on supporting structures and reduces energy consumption.

3. Low Noise and Vibration: Plastic bush chains produce minimal noise and vibration during operation. Their smooth and quiet operation is beneficial in applications where noise reduction is required, such as in conveyor systems or assembly lines located in noise-sensitive environments.

4. Self-Lubrication: Some plastic bush chains are designed with built-in self-lubricating properties. These chains incorporate lubricating additives or solid lubricants within the plastic material, reducing the need for external lubrication. Self-lubricating plastic bush chains result in reduced maintenance requirements and prolonged chain life.

5. Chemical Resistance: Plastic bush chains exhibit excellent resistance to various chemicals, including oils, solvents, acids, and alkalis. This chemical resistance allows them to maintain their performance and structural integrity even in environments where exposure to chemicals is common.

6. Design Flexibility: Plastic bush chains offer design flexibility, allowing for customization to meet specific application requirements. They can be manufactured in various shapes, sizes, and configurations to accommodate different load capacities, speeds, and operating conditions.

7. Reduced Wear on Equipment: Plastic bush chains have lower friction coefficients compared to metal chains. This reduced friction minimizes wear on the sprockets and other mating components, extending the service life of the entire system and reducing maintenance costs.

8. Electrical Insulation: Plastic bush chains have excellent electrical insulation properties, making them suitable for applications where electrical conductivity needs to be avoided. They can be used in electrical or electronic assembly lines or environments where static electricity control is necessary.

These benefits make plastic bush chains a viable alternative to traditional metal chains in various industries, including food processing, packaging, pharmaceuticals, electronics, and many others.

bush chain

Can a bush chain be used in corrosive or harsh environments?

Yes, a bush chain can be used in corrosive or harsh environments, but it requires careful selection and proper maintenance to ensure optimal performance and longevity. Here are some considerations:

1. Material Selection: When operating in corrosive environments, it is crucial to select a bush chain made from corrosion-resistant materials such as stainless steel or specialty alloys. These materials offer enhanced resistance to corrosion and chemical attack.

2. Coatings and Surface Treatments: Applying coatings or surface treatments to the bush chain can provide additional protection against corrosion. For example, coatings like zinc plating, nickel plating, or chemical treatments can help inhibit rust and corrosion.

3. Sealing and Protection: In harsh environments, it is essential to protect the bush chain from contaminants and corrosive substances. Enclosing the chain in a protective housing or using seals, covers, or boots can help prevent the entry of corrosive agents and debris.

4. Proper Lubrication: Adequate lubrication is crucial for reducing friction and preventing corrosion. Choose lubricants specifically designed for use in corrosive environments, such as those with anti-corrosion additives. Regular lubrication maintenance is necessary to ensure the chain remains well-lubricated and protected.

5. Cleaning and Maintenance: Regular cleaning and maintenance are vital to remove any corrosive substances or contaminants that may have accumulated on the chain. This includes thorough cleaning, inspection, and re-lubrication as necessary.

It is important to consult with chain manufacturers or industry experts to determine the most suitable bush chain and maintenance practices for the specific corrosive or harsh environment. By implementing these measures, a bush chain can effectively operate and withstand the challenges posed by corrosive or harsh conditions.

bush chain

What is a bush chain and how does it work?

A bush chain, also known as a bush roller chain or a bushing chain, is a type of roller chain commonly used in mechanical power transmission systems. It consists of a series of interconnected links, known as bushings, that are joined together by pins. The bushings are cylindrical metal sleeves with internal bearings that rotate on the pins.

The working principle of a bush chain is based on the interaction between the rotating bushings and the teeth of the sprockets. The chain is wrapped around two or more sprockets, with one sprocket being the driver and the other(s) being the driven. As the driver sprocket rotates, it pulls the chain, causing the bushings to rotate on the pins.

Each bushing has an outer surface that comes into contact with the sprocket teeth. The engagement between the sprocket teeth and the bushings’ outer surface creates the driving force, allowing power to be transmitted from the driver sprocket to the driven sprocket(s). This rotational motion transfers torque and enables the movement of various mechanical components or systems connected to the driven sprocket(s).

The bush chain design provides several advantages, including high tensile strength, flexibility, and the ability to transmit power over long distances. The bushings and pins are typically made of hardened steel to ensure durability and resistance to wear. Lubrication is essential to reduce friction and prevent premature wear of the bushings and pins.

Bush chains are widely used in various applications, such as industrial machinery, agricultural equipment, automotive systems, and conveyor systems. They are favored for their reliability, efficiency, and ease of installation. Proper maintenance, including regular lubrication and tension adjustment, is necessary to ensure the smooth operation and longevity of a bush chain.

China Professional High Quality Duplex Stainless Steel Industrial Short Pitch Roller Chains and Bush Chain  China Professional High Quality Duplex Stainless Steel Industrial Short Pitch Roller Chains and Bush Chain
editor by CX 2023-07-19

China High Quality Professional Manufacturer of G80 Lifting Chains roller bush chain

Solution Description

Diameter
(mm)
WLL/T B.L/T d (mm) p (mm) a (mm) min b (mm) max
6mm 1.12 four.48 6±0.24 18±0.five seven.eight 22.two
7mm one.5 6 7±0.28 21±0.six nine.1 twenty five.9
8mm  two eight 8±0.32 24±0.7 10.four 29.6
10mm 3.fifteen 12.6 10±0.four 30±0.9 13 37
13mm  five.3  21.two 13±0.52 39±1.2 16.9 forty eight.one
16mm 8 32 16±0.64 48±1.4 20.8 fifty nine.2
18mm ten forty 18±0.nine 54±1.six 23.4 sixty six.six
20mm  12.five 50 20±1  60±1.8  26 seventy four
22mm 15 sixty 22±1.1 66±2. 28.six 81.4
26mm 21.2 eighty four.8 26±1.3 78±2.three 33.8 96.2
32mm 31.five 126 32±1.6 96±2.9 41.six 118

Evidence examination ar 2.5 instances of the functioning load restrict
Greatest load is 4 tims of the working load restrict

Can I get a sample prior to get?       
confident, we offer you Free sample inside of 3-5 operating days.

Can you acknowledge tiny buy?   
for some typical products, we can do small amount in accordance your details requirement.

How about your shipping time?
twenty five-30days

 

US $0.6-5.6
/ Meter
|
1,000 Meters

(Min. Order)

###

Usage: Drag Chain
Material: Iron
Surface Treatment: Polishing
Feature: Heat Resistant
Chain Size: 1/2"*3/32"
Structure: Welded Chain

###

Samples:
US$ 0.6/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Diameter
(mm)
WLL/T B.L/T d (mm) p (mm) a (mm) min b (mm) max
6mm 1.12 4.48 6±0.24 18±0.5 7.8 22.2
7mm 1.5 6 7±0.28 21±0.6 9.1 25.9
8mm  2 8 8±0.32 24±0.7 10.4 29.6
10mm 3.15 12.6 10±0.4 30±0.9 13 37
13mm  5.3  21.2 13±0.52 39±1.2 16.9 48.1
16mm 8 32 16±0.64 48±1.4 20.8 59.2
18mm 10 40 18±0.9 54±1.6 23.4 66.6
20mm  12.5 50 20±1  60±1.8  26 74
22mm 15 60 22±1.1 66±2.0 28.6 81.4
26mm 21.2 84.8 26±1.3 78±2.3 33.8 96.2
32mm 31.5 126 32±1.6 96±2.9 41.6 118
US $0.6-5.6
/ Meter
|
1,000 Meters

(Min. Order)

###

Usage: Drag Chain
Material: Iron
Surface Treatment: Polishing
Feature: Heat Resistant
Chain Size: 1/2"*3/32"
Structure: Welded Chain

###

Samples:
US$ 0.6/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Diameter
(mm)
WLL/T B.L/T d (mm) p (mm) a (mm) min b (mm) max
6mm 1.12 4.48 6±0.24 18±0.5 7.8 22.2
7mm 1.5 6 7±0.28 21±0.6 9.1 25.9
8mm  2 8 8±0.32 24±0.7 10.4 29.6
10mm 3.15 12.6 10±0.4 30±0.9 13 37
13mm  5.3  21.2 13±0.52 39±1.2 16.9 48.1
16mm 8 32 16±0.64 48±1.4 20.8 59.2
18mm 10 40 18±0.9 54±1.6 23.4 66.6
20mm  12.5 50 20±1  60±1.8  26 74
22mm 15 60 22±1.1 66±2.0 28.6 81.4
26mm 21.2 84.8 26±1.3 78±2.3 33.8 96.2
32mm 31.5 126 32±1.6 96±2.9 41.6 118

Roller Chain Basics

Before choosing the right roller chain for your machine, it is necessary to learn some basics. Learn about sprockets, tensile strength, pitch, and width. Read this article to learn more. It will help you make an informed decision. Getting the right product is critical, but it’s not always as simple as choosing a brand name. You need to choose a company that supports its products and provides good service.
chain

Roller sprocket

If you are planning to purchase roller sprockets for your application, you should first look at the various types available. Sprockets available for single-strand roller chains are manufactured by Boston Steel – Type B sprockets are drilled to size. They are available in 1/4, 3/8, 1/2, 5/8, 3/4 and 1″ pitch sizes.
The diameter of the sprocket is important when choosing the right sprocket for your application. Using a caliper to measure the diameter of a toothless plate is a good way to determine the exact size of the sprocket. A caliper is the diameter of a plate without teeth. On Type B and C sprockets, the hub diameter measures the thickness of the hub.
Another type of sprocket is the steel split sprocket, which is split in diameter. This type is easy to install and remove, and is held together by bolts in the hub. Typically, split sprockets have chain pitches ranging from 40 to 240 and bores ranging from 3/4″ to 6″. The split sprockets are designed with one pointing towards the ceiling and the other two parallel to the floor.
When shopping for sprockets, it is important to remember that they are designed specifically for a specific chain. All chains are manufactured to specific standards. In the United States, the most common standard is ANSI. The chain pitch is the distance between the center of each pin and the center of the next pin. In the US, the standard is always measured in eight-inch intervals.
In addition to sprocket size, sprocket pitch and the surface area also affect chain life. Unlike belt sprockets, which are made of forged steel, the teeth on roller sprockets are stamped from steel sheet or pressed from powdered metal. The harder the teeth, the longer the chain will last.

Roller chain pitch

The pitch of a roller chain is the distance between the sprocket and the pin. The smaller the thread pitch, the smaller the bushing wear. Generally speaking, the smaller the pitch, the longer the life of the chain. For best performance and longest life, manufacturers recommend a minimum chain pitch of 2% to 3%. Chain pitch is important to ensure proper performance, and the manufacturer recommends that you replace the chain when it reaches 2% to 3% of normal.
To determine the correct chain pitch for a particular chain, first determine the sprocket size and pitch. Pitch is the distance between pin centers, measured in 1/8 inch increments. The pin diameter of the chain is also important. If you’re not sure about the pin diameter of your chain, measure a few links to get a good average reading. Alternatively, use a caliper to measure the inside diameter of the sprocket and count the number of teeth.
When sizing a sprocket, measure the chain between the gears with a caliper and compare it to the measurements on the chain size chart. Make sure you have checked all the specs and checked the correct chain pitch. Then, choose the correct chain pitch for your needs. This is a critical step in choosing the right chain. So get the correct pitch for your roller chain. Correct pitch helps ensure maximum performance and safety.
To identify a specific type of roller chain, measure its tensile strength. This represents the amount of load the chain can withstand before breaking. Another key parameter to consider is fatigue strength. Chains with high fatigue strength are more resistant to rust and wear than chains with low fatigue strength. The numbers on the right in the standard numbering represent normal or light duty chains, while the numbers on the left represent the pitch of heavy-duty chains.
Double pitch roller chains are a variant of single pitch chains. They are manufactured according to ISO 606 and meet the same standards as single pitch chains. They are mainly used in applications with lower requirements for speed and power transmission. The plates of double pitch roller chains are also longer than single pitch chains. The double pitch drive series is also used for elevator and long conveyor drives. There are three main types of roller chains: single-pitch chains, double-pitch carriers, and oversized rollers.

Roller chain width

When buying a roller chain, one of the first decisions you must make is its width. To make this determination, you need to measure the overall width of the chain, the diameter, and the width of each roller. You must also know the height and thickness of the board. After taking these measurements, you can start shopping for the perfect roller chain. But before you buy a new chain, it’s important to know what to expect from the chain itself.
There are many different types of roller chains. These chains are available for ANSI and metric measurements. They come in single-stranded and double-stranded variants. They are usually used for power transmission. Other types include agricultural, automotive, conveyor, multi-strand, and four-strand chains. These charts also include a chart so you can easily see the exact size you need. Listed below are some of the benefits of buying a roller chain.
Roller diameter and pin diameter are important factors in choosing the correct chain width. The width of the chain is the nearest binary fraction of 5/8 of an inch. It should be at least half the thickness of the sprocket, and the plate thickness is one-eighth the width of the chain. Overweight chains are indicated with the suffix H. The pitch and width of the chain are determined by the working load and machine speed.
The outer links of the roller chain are called pin links. These pins are inserted into the bushings of the adjacent roller links. They are held in place by cotter pins. Pin links are usually pressed into the pins of heavy-duty chains. These pins are used to hold the rollers in place. However, these pin chains can reduce the power rating of roller chains by up to 20%.
The ANSI 29.1 Steel Chain Specification specifies a minimum pitch in inches and ultimate strength of 12,500 x pitch in inches. At the same time, the O-ring chain greatly reduces wear due to its lubricating effect. O-ring and X-ring chains contain a lubricant injected by vacuum when riveting the chain together. Transmission chains are tested and governed by standards bodies such as ANSI. In 2011, the American Society of Mechanical Engineers developed a standard for precision power transmission chains.
chain

Roller chain tensile strength

One of the most important indicators of roller chain strength is tensile strength. This measurement refers to the amount of load the chain can withstand before breaking. Another measure, called fatigue strength, refers to the maximum load a chain can withstand before it breaks. The strength of a roller chain depends on its size, the quality of the steel used in its construction, and the heat treatment. There are also differences in the types of shot peening used to treat steel, pitch holes, and link plates.
When choosing a roller chain, the workload is critical. This is the maximum load the chain can withstand before fatigue failure occurs. This measurement is critical because it helps determine the type of load applied to the chain. When deciding which roller chain to buy, be sure to consider the mechanical type and desired strength. Then, make sure it meets strength and load-carrying capacity requirements.
The ultimate tensile strength of a roller chain is based on the manufacturer’s recommended maximum tensile strength. However, the actual tensile strength may be higher or lower than this value. The working load limit of a roller chain can also be calculated by multiplying the chain diameter by the grade. The working load limit of a chain is the highest tension it can withstand before breaking. This value is usually expressed in points.
The maximum tensile strength of roller chains varies by chain type. The single-strand heavy chain has thick side plates for higher shock loads. Single strand heavy-duty roller chains, also known as “bushing” roller chains, are also available. Double-stranded heavy chains are structurally similar, but they have two layers of steel connected by pins that are nearly twice as strong as standard roller chains.
The tensile strength of a single-strand roller chain is approximately 500 tons. In comparison, a single-chain blockchain has a tensile strength of 900. The tensile strength of the two is similar, and it is not recommended to choose one or the other. Although steel and titanium chains are considered the strongest materials for roller chains, these materials are not magnetic.

China High Quality Professional Manufacturer of G80 Lifting Chains     roller bush chainChina High Quality Professional Manufacturer of G80 Lifting Chains     roller bush chain
editor by czh 2023-01-02

China high quality High Strength and Wear Resistance Short Pitch Precision 100h-3 Heavy Duty Series Triplex Transmission Roller Chains and Bush Chains with Hot selling

ProductDescription

HeavyDutySeriesTriplexRollerChains& BushChains

 

ISO/ANSI

Chain No.
 

Pitch
P
mm
 

Rollerdiameter

d1max
mm
 

Widthbetweeninner plates
b1min
mm
 

Pindiameter

d2max
mm
 

Pinlength

Innerplatedepth
h2max
mm
 

Platethickness
Tmax
mm
 

Transversepitch
Pt
mm
 

Tensilestrength
Qmin
kN/lbf
 

Averagetensilestrength
Q0
kN
 

Weightpermeter
qkg/m
 

Lmax
mm
Lcmax
mm
100H-3 31.750 19.05 18.ninety 9.53 121.eight one hundred twenty five.1 thirty.00 4.80 39.09 265.5/60341 314.8 twelve.ninety six

 

ROLLERCHAIN

Rollerchainorbushrollerchainisthetypeofchaindrivemostcommonlyusedfortransmissionofmechanicalpoweronmanykindsofdomestic,industrialandagriculturalmachinery,includingconveyors,wire-andtube-drawingmachines,printingpresses,automobiles,bikes,andbicycles.Itconsistsofa seriesofshortcylindricalrollersheldtogetherbysidelinks.Itisdrivenbya toothedwheelcalleda sprocket.Itisa simple,trustworthy,andefficientmeansofpowertransmission.

CONSTRUCTIONOFTHECHAIN

Twodifferentsizesofrollerchain,showingconstruction.
Therearetwotypesoflinksalternatinginthebushrollerchain.Thefirsttypeisinnerlinks,havingtwoinnerplatesheldtogetherbytwosleevesorbushingsuponwhichrotatetworollers.Innerlinksalternatewiththesecondtype,theouterlinks,consistingoftwoouterplatesheldtogetherbypinspassingthroughthebushingsoftheinnerlinks.The”bushingless”rollerchainissimilarinoperationthoughnotinconstructioninsteadofseparatebushingsorsleevesholdingtheinnerplatestogether,theplatehasa tubestampedintoitprotrudingfromtheholewhichservesthesamepurpose.Thishastheadvantageofremovingonestepinassemblyofthechain.

Therollerchaindesignreducesfrictioncomparedtosimplerdesigns,resultinginhigherefficiencyandlesswear.Theoriginalpowertransmissionchainvarietieslackedrollersandbushings,withboththeinnerandouterplatesheldbypinswhichdirectlycontactedthesprocketteethhoweverthisconfigurationexhibitedextremelyrapidwearofboththesprocketteeth,andtheplateswheretheypivotedonthepins.Thisproblemwaspartiallysolvedbythedevelopmentofbushedchains,withthepinsholdingtheouterplatespassingthroughbushingsorsleevesconnectingtheinnerplates.Thisdistributedthewearovera greaterareahowevertheteethofthesprocketsstillworemorerapidlythanisdesirable,fromtheslidingfrictionagainstthebushings.TheadditionofrollerssurroundingthebushingsleevesofthecZheJiang dprovidedrollingcontactwiththeteethofthesprocketsresultinginexcellentresistancetowearofbothsprocketsandchainaswell.Thereisevenverylowfriction,aslongasthechainissufficientlylubricated.Steady,thoroughly clean,lubricationofrollerchainsisofprimaryimportanceforefficientoperationaswellascorrecttensioning.

LUBRICATION

Manydrivingchains(forexample,infactoryequipment,ordrivinga camshaftinsideaninternalcombustionengine)operateincleanenvironments,andthusthewearingsurfaces(thatis,thepinsandbushings)aresafefromprecipitationandairbornegrit,manyevenina sealedenvironmentsuchasanoilbath.Somerollerchainsaredesignedtohaveo-ringsbuiltintothespacebetweentheoutsidelinkplateandtheinsiderollerlinkplates.Chainmanufacturersbegantoincludethisfeaturein1971aftertheapplicationwasinventedbyJosephMontanowhileworkingforWhitneyChainofHartford,Connecticut.O-ringswereincludedasa waytoimprovelubricationtothelinksofpowertransmissionchains,a servicethatisvitallyimportanttoextendingtheirworkinglife.Theserubberfixturesforma barrierthatholdsfactoryappliedlubricatinggreaseinsidethepinandbushingwearareas.Further,therubbero-ringspreventdirtandothercontaminantsfromenteringinsidethechainlinkages,wheresuchparticleswouldotherwisecausesignificantwear.[citationneeded]

Therearealsomanychainsthathavetooperateindirtyconditions,andforsizeoroperationalreasonscannotbesealed.Examplesincludechainsonfarmequipment,bicycles,andchainsaws.Thesechainswillnecessarilyhaverelativelyhighratesofwear,particularlywhentheoperatorsarepreparedtoacceptmorefriction,lessefficiency,morenoiseandmorefrequentreplacementastheyneglectlubricationandadjustment.

Manyoil-basedlubricantsattractdirtandotherparticles,eventuallyforminganabrasivepastethatwillcompoundwearonchains.Thisproblemcanbecircumventedbyuseofa “dry”PTFEspray,whichformsa solidfilmafterapplicationandrepelsbothparticlesandmoisture.

VARIANTSDESIGN

Layoutofa rollerchain:1.Outerplate,2.Innerplate,3.Pin,4.Bushing,5.Roller
Ifthechainisnotbeingusedfora highwearapplication(forinstanceifitisjusttransmittingmotionfroma hand-operatedlevertoa controlshaftona machine,ora slidingdooronanoven),thenoneofthesimplertypesofchainmaystillbeused.Conversely,whereextrastrengthbutthesmoothdriveofa smallerpitchisrequired,thechainmaybe”siamesed”insteadofjusttworowsofplatesontheoutersidesofthechain,theremaybethree(“duplex”),4(“triplex”),ormorerowsofplatesrunningparallel,withbushingsandrollersbetweeneachadjacentpair,andthesamenumberofrowsofteethrunninginparallelonthesprocketstomatch.Timingchainsonautomotiveengines,forexample,typicallyhavemultiplerowsofplatescalledstrands.

Rollerchainismadeinseveralsizes,themostcommonAmericanNationalStandardsInstitute(ANSI)standardsbeing40,fifty,60,and80.Thefirstdigit(s)indicatethepitchofthechainineighthsofaninch,withthelastdigitbeing0 forstandardchain,1 forlightweightchain,and5 forbushedchainwithnorollers.Therefore,a chainwithhalf-inchpitchwouldbea #40whilea #160sprocketwouldhaveteethspaced2 inchesapart,etc.Metricpitchesareexpressedinsixteenthsofaninchthusa metric#8chain(08B-1)wouldbeequivalenttoanANSI#40.Mostrollerchainismadefromplaincarbonoralloysteel,butstainlesssteelisusedinfoodprocessingmachineryorotherplaceswherelubricationisa problem,andnylonorbrassareoccasionallyseenforthesamereason.

Rollerchainisordinarilyhookedupusinga masterlink(alsoknownasa connectinglink),whichtypicallyhasonepinheldbya horseshoeclipratherthanfrictionfit,allowingittobeinsertedorremovedwithsimpletools.Chainwitha removablelinkorpinisalsoknownascotteredchain,whichallowsthelengthofthechaintobeadjusted.Halflinks(alsoknownasoffsets)areavailableandareusedtoincreasethelengthofthechainbya singleroller.Rivetedrollerchainhasthemasterlink(alsoknownasa connectinglink)”riveted”ormashedontheends.Thesepinsaremadetobedurableandarenotremovable.

USE

Anexampleoftwo’ghost’sprocketstensioninga triplexrollerchainsystem
Rollerchainsareusedinlow-tomid-speeddrivesataround600to800feetperminutehowever,athigherspeeds,around2,000to3,000feetperminute,V-beltsarenormallyusedduetowearandnoiseissues.
Abicyclechainisa formofrollerchain.Bicyclechainsmayhavea masterlink,ormayrequirea chaintoolforremovalandinstallation.A similarbutlargerandthusstrongerchainisusedonmostmotorcyclesalthoughitissometimesreplacedbyeithera toothedbeltora shaftdrive,whichofferlowernoiselevelandfewermaintenancerequirements.
Thegreatmajorityofautomobileenginesuserollerchainstodrivethecamshaft(s).Veryhighperformanceenginesoftenusegeardrive,andstartingintheearly1960stoothedbeltswereusedbysomemanufacturers.
Chainsarealsousedinforkliftsusinghydraulicramsasa pulleytoraiseandlowerthecarriagehowever,thesechainsarenotconsideredrollerchains,butareclassifiedasliftorleafchains.
Chainsawcuttingchainssuperficiallyresemblerollerchainsbutaremorecloselyrelatedtoleafchains.Theyaredrivenbyprojectingdrivelinkswhichalsoservetolocatethechainontothebar.

SeaHarrierFA.2ZA195front(chilly)vectorthrustnozzle- thenozzleisrotatedbya chaindrivefromanairmotor
Aperhapsunusualuseofa pairofmotorcyclechainsisintheHarrierJumpJet,wherea chaindrivefromanairmotorisusedtorotatethemovableenginenozzles,allowingthemtobepointeddownwardsforhoveringflight,ortotherearfornormalforwardflight,a systemknownasThrustvectoring.

Dress in

 

Theeffectofwearona rollerchainistoincreasethepitch(spacingofthelinks),causingthechaintogrowlonger.Notethatthisisduetowearatthepivotingpinsandbushes,notfromactualstretchingofthemetal(asdoeshappentosomeflexiblesteelcomponentssuchasthehand-brakecableofa motorvehicle).

Withmodernchainsitisunusualfora chain(otherthanthatofa bicycle)towearuntilitbreaks,sincea wornchainleadstotherapidonsetofwearontheteethofthesprockets,withultimatefailurebeingthelossofalltheteethonthesprocket.Thesprockets(inparticularthesmallerofthetwo)suffera grindingmotionthatputsa characteristichookshapeintothedrivenfaceoftheteeth.(Thiseffectismadeworsebya chainimproperlytensioned,butisunavoidablenomatterwhatcareistaken).Thewornteeth(andchain)nolongerprovidessmoothtransmissionofpowerandthismaybecomeevidentfromthenoise,thevibrationor(incarenginesusinga timingchain)thevariationinignitiontimingseenwitha timinglight.Bothsprocketsandchainshouldbereplacedinthesecases,sincea newchainonwornsprocketswillnotlastlong.Nonetheless,inlessseverecasesitmaybepossibletosavethelargerofthetwosprockets,sinceitisalwaysthesmalleronethatsuffersthemostwear.Onlyinverylight-weightapplicationssuchasa bicycle,orinextremecasesofimpropertension,willthechainnormallyjumpoffthesprockets.

Thelengtheningduetowearofa chainiscalculatedbythefollowingformula:

M= thelengthofa numberoflinksmeasured

S= thenumberoflinksmeasured

P= Pitch

Inindustry,itisusualtomonitorthemovementofthechaintensioner(whethermanualorautomatic)ortheexactlengthofa drivechain(oneruleofthumbistoreplacea rollerchainwhichhaselongated3%onanadjustabledriveor1.5%ona fixed-centerdrive).A simplermethod,particularlysuitableforthecycleormotorcycleuser,istoattempttopullthechainawayfromthelargerofthetwosprockets,whilstensuringthechainistaut.Anysignificantmovement(e.g.makingitpossibletoseethrougha gap)probablyindicatesa chainwornuptoandbeyondthelimit.Sprocketdamagewillresultiftheproblemisignored.Sprocketwearcancelsthiseffect,andmaymaskchainwear.

CHAINSTRENGTH

Themostcommonmeasureofrollerchain’sstrengthistensilestrength.Tensilestrengthrepresentshowmuchloada chaincanwithstandundera one-timeloadbeforebreaking.Justasimportantastensilestrengthisa chain’sfatiguestrength.Thecriticalfactorsina chain’sfatiguestrengthisthequalityofsteelusedtomanufacturethechain,theheattreatmentofthechaincomponents,thequalityofthepitchholefabricationofthelinkplates,andthetypeofshotplustheintensityofshotpeencoverageonthelinkplates.Otherfactorscanincludethethicknessofthelinkplatesandthedesign(contour)ofthelinkplates.Theruleofthumbforrollerchainoperatingona continuousdriveisforthechainloadtonotexceeda mere1/6or1/9ofthechain’stensilestrength,dependingonthetypeofmasterlinksused(push-fitvs.slip-match)[citationneeded].Rollerchainsoperatingona continuousdrivebeyondthesethresholdscanandtypicallydofailprematurelyvialinkplatefatiguefailure.

ThestandardminimumultimatestrengthoftheANSI29.1steelchainis12,500x (pitch,ininches)2.X-ringandO-Ringchainsgreatlydecreasewearbymeansofinternallubricants,increasingchainlife.Theinternallubricationisinsertedbymeansofa vacuumwhenrivetingthechaintogether.

CHAINSTHangZhouRDS

Standardsorganizations(suchasANSIandISO)maintainstandardsfordesign,dimensions,andinterchangeabilityoftransmissionchains.Forexample,thefollowingTableshowsdatafromANSIstandardB29.1-2011(PrecisionPowerTransmissionRollerChains,Attachments,andSprockets)developedbytheAmericanSocietyofMechanicalEngineers(ASME).Seethereferences[8][9][10] foradditionalinformation.

ASME/ANSIB29.1-2011RollerChainStandardSizesSizePitchMaximumRollerDiameterMinimumUltimateTensileStrengthMeasuringLoad25

ASME/ANSIB29.1-2011RollerChainStandardSizes Dimension Pitch MaximumRollerDiameter MinimumUltimateTensileStrength MeasuringLoad twenty five .250in(6.35mm) .130in(3.30mm) 780lb(350kg) 18lb(8.2kg) 35 .375in(9.53mm) .200in(5.08mm) 1,760lb(800kg) 18lb(8.2kg) forty one .500in(12.70mm) .306in(7.77mm) one,500lb(680kg) 18lb(8.2kg) 40 .500in(12.70mm) .312in(7.92mm) 3,125lb(1,417kg) 31lb(14kg) 50 .625in(15.88mm) .400in(10.16mm) four,880lb(2,210kg) 49lb(22kg) sixty .750in(19.05mm) .469in(eleven.91mm) seven,030lb(3,190kg) 70lb(32kg) eighty 1.000in(25.40mm) .625in(15.88mm) 12,500lb(5,700kg) 125lb(57kg) 100 one.250in(31.75mm) .750in(19.05mm) 19,531lb(8,859kg) 195lb(88kg) one hundred twenty 1.500in(38.10mm) .875in(22.23mm) 28,125lb(twelve,757kg) 281lb(127kg) a hundred and forty one.750in(forty four.45mm) 1.000in(twenty five.40mm) 38,280lb(seventeen,360kg) 383lb(174kg) 160 2.000in(fifty.80mm) 1.125in(28.58mm) 50,000lb(23,000kg) 500lb(230kg) one hundred eighty 2.250in(fifty seven.15mm) one.460in(37.08mm) 63,280lb(28,700kg) 633lb(287kg) two hundred 2.500in(63.50mm) 1.562in(39.67mm) 78,175lb(35,460kg) 781lb(354kg) 240 3.000in(76.20mm) one.875in(forty seven.63mm) 112,500lb(51,000kg) one,000lb(450kg

Formnemonicpurposes,belowisanotherpresentationofkeydimensionsfromthesamestandard,expressedinfractionsofaninch(whichwaspartofthethinkingbehindthechoiceofpreferrednumbersintheANSIstandard):

Pitch(inches) Pitchexpressed
ineighths ANSIstandard
chainnumber Width(inches) onefour 2eight twofive oneeight 3eight 38 3five 316 onetwo foureight four1 1four onetwo four8 4 fivesixteen fiveeight five8 five three8 three4 6eight six one2 1 8eight eight 5eight

Notes:
1.Thepitchisthedistancebetweenrollercenters.Thewidthisthedistancebetweenthelinkplates(i.e.slightlymorethantherollerwidthtoallowforclearance).
two.Theright-handdigitofthestandarddenotes0 =normalchain,1 =lightweightchain,5 =rollerlessbushingchain.
3.Theleft-handdigitdenotesthenumberofeighthsofaninchthatmakeupthepitch.
4.An”H”followingthestandardnumberdenotesheavyweightchain.A hyphenatednumberfollowingthestandardnumberdenotesdouble-strand(2),triple-strand(3),andsoon.Thus60H-3denotesnumber60heavyweighttriple-strandchain.
 Atypicalbicyclechain(forderailleurgears)usesnarrow1⁄2-inch-pitchchain.Thewidthofthechainisvariable,anddoesnotaffecttheloadcapacity.Themoresprocketsattherearwheel(historically3-6,nowadays7-12sprockets),thenarrowerthechain.Chainsaresoldaccordingtothenumberofspeedstheyaredesignedtoworkwith,forexample,”10speedchain”.Hubgearorsinglespeedbicyclesuse1/2″x 1/8″chains,where1/8″referstothemaximumthicknessofa sprocketthatcanbeusedwiththechain.

Typicallychainswithparallelshapedlinkshaveanevennumberoflinks,witheachnarrowlinkfollowedbya broadone.Chainsbuiltupwitha uniformtypeoflink,narrowatoneandbroadattheotherend,canbemadewithanoddnumberoflinks,whichcanbeanadvantagetoadapttoa specialchainwheel-distanceontheothersidesucha chaintendstobenotsostrong.

RollerchainsmadeusingISOstandardaresometimescalledasisochains.

 

WHYCHOOSEUS 

one.ReliableQualityAssuranceSystem
two.Chopping-EdgeComputer-ControlledCNCMachines
three.BespokeSolutionsfromHighlyExperiencedSpecialists
four.CustomizationandOEMAvailableforSpecificApplication
5.ExtensiveInventoryofSparePartsandAccessories
six.Nicely-DevelopedWorldwideMarketingNetwork
seven.EfficientAfter-SaleServiceSystem

 

The219setsofadvancedautomaticproductionequipmentprovideguaranteesforhighproductquality.The167engineersandtechnicianswithseniorprofessionaltitlescandesignanddevelopproductstomeettheexactdemandsofcustomers,andOEMcustomizationsarealsoavailablewithus.Oursoundglobalservicenetworkcanprovidecustomerswithtimelyafter-salestechnicalservices.

Wearenotjustamanufacturerandsupplier,butalsoanindustryconsultant.Weworkpro-activelywithyoutoofferexpertadviceandproductrecommendationsinordertoendupwithamostcosteffectiveproductavailableforyourspecificapplication.TheclientsweserveworldwiderangefromenduserstodistributorsandOEMs.OurOEMreplacementscanbesubstitutedwherevernecessaryandsuitableforbothrepairandnewassemblies.

Roller Chain Servicing Suggestions

There are numerous items to hold in brain when keeping a roller chain. The primary motives include friction and external influences. With no proper lubrication and adjustment, this kind of chains will put on prematurely. Listed here are some tips for trying to keep your roller chain in leading form. continue reading through! This will make your process less complicated. We will also talk about the price of the new roller chain. As often, keep in mind to check for loose finishes and modify the chain frequently.
chain

Preloading

Roller chains are developed to accommodate a lot of various types of hundreds. Sprockets are the main lead to of chain use. Axial and angular misalignment happens when the sprocket faces are not appropriately aligned. Each kinds of misalignment boost stress and put on on the roller chain. They can also negatively have an effect on the travel. As a result, deciding on the correct chain is an important thought.
Preloading will help to remove original elongation and increase support lifestyle. The rewards of preloading can be observed in the preloading chart. Important elongation takes place in the course of drive startup with no or minimal preload. This is thanks to the floor hardness of the worn elements. On the other hand, a appropriately preloaded chain displays small elongation for the duration of the first begin. Consequently, correct preload can extend wear lifestyle.
Although elongation is a normal phenomenon in any push, it can be minimized or eliminated with suitable routine maintenance. In addition to standard inspections, you need to do a full inspection of your chain soon after the initial hundred hrs. This inspection need to target on important daily life factors such as 3% elongation, how the chain is lubricated, and any other issues that could impact lifestyle. A excellent top quality chain should have the longest life and no troubles.
There are a lot of different roller chain requirements. A great rule of thumb is to pick chains with at least five backlinks. Then, tighten the chain till a split takes place, and it will tell you what kind of split transpired. Alternatively, you can use a roller chain with the maximum allowable load. As extended as the MAL doesn’t exceed that number, it is nevertheless flawlessly secure to use it for any software.

lubricating

When it arrives to lubrication, there are several diverse tactics. For instance, spray lubrication is a well-liked technique for higher-horsepower drives and higher-load and fast-shifting machines. This strategy is quite efficient, but it is high-priced, and spraying the chain too considerably out of the guard can trigger leaks. An additional frequent method is brush lubrication. Brush lubrication entails implementing a steady circulation of oil to the chain, pushing it into the chain. This lubrication method reduces the application temperature of the chain. Also, it can extend the lifestyle of the chain, based on the manufacturer’s technical specs.
Whilst the lubrication of roller chain couplings differs by software, sprocket hubs must be lubricated regular monthly to guarantee suitable sealing. The volume of oil employed is dependent on the rotational pace and the type of roller chain coupling. In general, lubricants used in roller chain couplings should have excellent adhesion, oxidation, and mechanical balance.
Put on-resistant lubricants are advised. They prevent the rollers from sticking to each and every other and avoid rusting. These lubricants have low surface rigidity and are not harmful to steel or O-ring chains. The optimum lubrication method depends on ambient temperature, horsepower, and chain speed. Appropriately lubricating a roller chain boosts the life of the chain and reduces the chance of use.
Correct lubrication of the roller chain is crucial to avoid corrosion and extend its services existence. The oil kinds a smooth film on the chain factors, reducing steel-to-metal contact and minimizing friction and use. Moreover, the oil offers a easy working floor and lowers sounds. Even so, the operating-in procedure of roller chain lubrication can not be underestimated. When employing weighty-responsibility oils, make sure that the lubricant is compatible with functioning and ambient temperatures.

Maintain

To prolong the existence of your roller chain, you want to carry out regular inspections. Initial, you should check out the T-pin on the link plate at the joint. If they are not linked correctly, it can cause the chain to stretch and not maintain appropriate spacing and timing. Next, you ought to appear for uncommon sounds, corrosion, and grime that might point out put on. If you notice any of these problems, it truly is time to replace the chain.
In buy to appropriately keep a roller chain, each places of the roller chain should be lubricated with the right lubricant. Lubricants utilized need to be SAE non-degreased oils. There are several varieties of lubricants accessible, but the best a single is a petroleum-dependent oil with a high viscosity. You can also examine for indications of put on, these kinds of as crimson or brown discoloration. This indicates that there is not enough lubrication.
Whilst the lifestyle expectancy of a roller chain is unfamiliar, it is important to know how to prolong its daily life and increase its efficiency. Inappropriate tension and alignment can shorten its existence and location undue tension on the generate system and the chain alone. Incorrect pressure can also lead to slippage and increased strength output. For that reason, you should estimate the tension and alignment of the chain in the course of the original installation. Verify and modify frequently.
One more way to lengthen the life of your rollers is to completely thoroughly clean the inside of and outside of the rollers. You need to also lubricate it often to prevent too much warmth buildup. Designed to avoid overheating by restricting the volume of perform in the course of crack-ins. In addition, normal inspections will aid you catch anomalies early sufficient to end operations. Previous but not the very least, regular lubrication will lengthen the lifestyle of the roller chain.

Price

Acquiring a roller chain is a huge selection, but first value shouldn’t be the only thing to consider. The cost of the roller chain itself, as well as the running costs, must be considered. Even the cheapest-priced chains can be much more expensive in the lengthy run. Additionally, servicing and power fees may enhance. The very best roller chain for your company will be the a single that ideal fits your wants. Outlined beneath are some issues to contemplate when buying a roller chain.
First, what content need to you use? Roller chains come in several diverse materials. Stainless steel is a commonly utilised materials in building. Resources are picked primarily based on the expense and style of chain horsepower transmission. Numerous manufacturing processes will decide which content is appropriate for your software. Also, the weight of the chain will differ relying on its pitch and the development method utilised. A big component of the expense of a roller chain is on the generate sprocket.
An additional thing to consider is set up expense. Roller chains are typically employed in agricultural and transportation purposes, particularly for agronomic items. If lubrication is your problem, servicing-totally free chains are the very best choice. Corrosion-resistant chains are excellent for soaked environments. They are sold in boxed lengths, so changing a lengthier size calls for adding a shorter size. To steer clear of difficulty, use the skateboard to assist link the hyperlinks.
Yet another thought is the all round width. The total width of an open #forty roller chain could differ but need to be at minimum 10 toes broad. Despite the fact that it is not the most high-priced type of roller chain, it will final for a longer time. Using it correctly will enhance its all round longevity, so it is a very good notion to decide on it properly. If your enterprise employs roller chains routinely, the price reduction is well value it.
chain

Application

A roller chain is made up of a pair of alternating pins and roller backlinks. The pins are pressed into the facet panels and hinged to the rollers. Roller chains can be solitary or multi-strand, linked by a typical pin. The multi-strand design supplies higher shear toughness for demanding electrical power transmission programs. Common apps for roller chains incorporate conveyors, hoists, and other mechanical tools.
The horsepower capacity of a roller chain is limited by several variables, which includes pin shock and friction. While investigation into these aspects has positioned some limitations on the greatest functioning pace of the roller chain, sensible knowledge has proven that these programs can be utilized at increased speeds. Correct lubrication and cooling can enhance the toughness of these chains. In addition, roller chain apps include:
Travel and conveyor programs are the two major employs of roller chains. In the course of driving functions, put on and elongation are a organic portion of the procedure. Even so, lubrication plays a crucial position in minimizing wear and shock loads. Therefore, dress in is inevitable and special care need to be taken to ensure appropriate lubrication. Furthermore, lubrication lowers heat dissipation in the chain.
The resources used to make roller chains range from one particular sort to an additional. Stainless metal is widespread, but nylon or brass are sometimes employed. These components are much less pricey and much more tough than steel or stainless metal. The ideal substance for the occupation relies upon on a assortment of factors, such as price, environmental conditions, and style horsepower transmission. For illustration, the pin bushing get in touch with region is a essential spot necessitating lubrication. Furthermore, some coatings are created to retard the corrosive effects of water or oil.
China high quality High Strength and Wear Resistance Short Pitch Precision 100h-3 Weighty Obligation Collection Triplex Transmission Roller Chains and Bush Chains     with Sizzling promoting

China Good quality Short-Pitch 085-2 Precision General Hardware Parts Martin Sugar/Coal Machine Roller Chains with ISO/ASME/DIN/ANSI Standard with high quality

Merchandise Description

Simple Details

 

ANSI NO:  

 

forty one-2R

DIN/ISO NO:  

085-2

Pitch (mm):

12.7000

Roller Diameter(mm):

 

7.seventy seven

Interior Plate Width (mm):

 

6.twenty five

Common Tensile Power:

 

sixteen.9KN

Pin Diameter(mm):

 

three.58

Plate Thickness (mm):

 

1.thirty

Chain Dimension:

 

5F, 10F, 5Meters

Bodyweight / Meter (kgs/m):

 

.41

Origin:

HangZhou China

HS Code:

7315119000

 

one. Delivering 10 series far more than 8000 versions of chains,Heavy responsibility engineering chains, oil subject chains, weighty duty  port crane chains, metallurgy conveyor chains, extremely-high pressure escalator chains, mining chains, etc, and  personalized options. 

two. Far more than eighty% of our roller chain are exported to all over the planet, We are serving customers of top 5 of world CZPT companies , and much more than ninety% of our turnover are from the cooperation with the producers in the world.   

three. Possessing superior on-line inspection for computerized assembly traces.  

4. Possessing country degree Enterprise Technologies Heart,  we expense no much less than thirteen% of our annual turnover investment in R&D  every single 12 months.

5. Getting our own Standardization Management Committee in our business, and participated in the formulation and modification of the roller chain requirements of the People’s Republic of China.

SMCC roller chain is 1 of the most commonly utilized and welcome products in the industry. Its constant innovative improvement is ideal to be the remedies for numerous conditions, standard roller chains, bike driving chain, O-ring bike chain, high strength roller chain, conveyor chains, agricultural driving chain, galvanized chain, nickel-plated chain, lubrication-free chain and oilfield chain and so on
Our SMCC chain was produced by equipment processing from raw materials to completed items and a full set of good quality screening tools. Mechanical processing gear incorporate grinding devices, higher pace punching machines, milling equipment, higher pace computerized rolling and assembling equipment. Warmth remedy was processed by constant mesh belt conveyor furnace, mesh belt conveyor annealing furnace, innovative central handle program of heat treatment method, rotary CZPT for chain component heat treatment, which make certain the security and consistency of the crucial perform of chain elements.
We are the greatest suppliers of Chinese greatest palletizing robotic enterprises. These objects are tough good quality with inexpensive rates, change of Japan chains, ZheJiang chains exported to Europe, The usa, Asia and other nations around the world and regions.
Workshop Display

 

 

 

ROLLER CHAIN

Roller chain or bush roller chain is the sort of chain generate most typically utilized for transmission of mechanical electricity on many varieties of domestic, industrial and agricultural equipment, such as conveyors, wire- and tube-drawing machines, printing presses, automobiles, motorcycles, and bicycles. It is composed of a series of brief cylindrical rollers held with each other by aspect hyperlinks. It is driven by a toothed wheel known as a sprocket. It is a simple, trustworthy, and successful indicates of electricity transmission.

Design OF THE CHAIN

Two diverse dimensions of roller chain, displaying design.
There are 2 kinds of hyperlinks alternating in the bush roller chain. The very first variety is interior backlinks, having 2 inner plates held jointly by 2 sleeves or bushings upon which rotate 2 rollers. Internal back links alternate with the 2nd variety, the outer hyperlinks, consisting of 2 outer plates held together by pins passing via the bushings of the interior back links. The “bushingless” roller chain is equivalent in operation though not in construction rather of individual bushings or sleeves keeping the inner plates with each other, the plate has a tube stamped into it protruding from the gap which serves the same objective. This has the advantage of eliminating 1 step in assembly of the chain.

The roller chain style reduces friction in contrast to easier designs, resulting in larger performance and less put on. The first electrical power transmission chain varieties lacked rollers and bushings, with each the inner and outer plates held by pins which right contacted the sprocket tooth however this configuration exhibited incredibly fast wear of each the sprocket teeth, and the plates where they pivoted on the pins. This difficulty was partially solved by the advancement of bushed chains, with the pins holding the outer plates passing through bushings or sleeves connecting the inner plates. This distributed the put on above a greater spot nevertheless the tooth of the sprockets nonetheless wore far more quickly than is appealing, from the sliding friction against the bushings. The addition of rollers bordering the bushing sleeves of the chain and offered rolling speak to with the enamel of the sprockets ensuing in exceptional resistance to wear of each sprockets and chain as nicely. There is even quite minimal friction, as lengthy as the chain is adequately lubricated. Constant, cleanse, lubrication of roller chains is of principal significance for efficient operation as properly as proper tensioning.

LUBRICATION

Numerous driving chains (for case in point, in manufacturing facility gear, or driving a camshaft inside of an interior combustion engine) run in cleanse environments, and therefore the wearing surfaces (that is, the pins and bushings) are secure from precipitation and airborne grit, many even in a sealed atmosphere this kind of as an oil tub. Some roller chains are developed to have o-rings developed into the place amongst the outdoors website link plate and the inside of roller url plates. Chain producers started to contain this feature in 1971 following the application was invented by Joseph Montano even though working for Whitney Chain of Hartford, Connecticut. O-rings were included as a way to increase lubrication to the back links of electricity transmission chains, a service that is vitally essential to extending their working existence. These rubber fixtures type a barrier that retains manufacturing facility used lubricating grease within the pin and bushing use areas. Even more, the rubber o-rings avert filth and other contaminants from coming into inside the chain linkages, where this sort of particles would or else cause considerable use.[citation necessary]

There are also several chains that have to operate in filthy problems, and for dimension or operational factors cannot be sealed. Examples include chains on farm tools, bicycles, and chain saws. These chains will automatically have reasonably high prices of wear, notably when the operators are well prepared to acknowledge a lot more friction, considerably less performance, a lot more noise and much more regular replacement as they neglect lubrication and adjustment.

A lot of oil-based mostly lubricants attract filth and other particles, sooner or later forming an CZPT paste that will compound dress in on chains. This difficulty can be circumvented by use of a “dry” PTFE spray, which forms a solid film after application and repels the two particles and moisture.

VARIANTS Design and style

Layout of a roller chain: 1. Outer plate, 2. Internal plate, 3. Pin, 4. Bushing, 5. Roller
If the chain is not currently being utilised for a high wear application (for instance if it is just transmitting movement from a hand-operated lever to a control shaft on a machine, or a sliding doorway on an oven), then 1 of the easier types of chain might still be utilized. Conversely, in which extra energy but the clean generate of a smaller pitch is necessary, the chain may be “siamesed” rather of just 2 rows of plates on the outer sides of the chain, there could be 3 (“duplex”), 4 (“triplex”), or a lot more rows of plates managing parallel, with bushings and rollers among every single adjacent pair, and the very same number of rows of tooth running in parallel on the sprockets to match. Timing chains on automotive engines, for instance, usually have numerous rows of plates referred to as strands.

Roller chain is produced in several dimensions, the most widespread American National Expectations Institute (ANSI) expectations currently being 40, 50, sixty, and 80. The 1st digit(s) reveal the pitch of the chain in eighths of an inch, with the last digit becoming 0 for common chain, 1 for lightweight chain, and 5 for bushed chain with no rollers. Therefore, a chain with half-inch pitch would be a #forty even though a #160 sprocket would have tooth spaced 2 inches aside, etc. Metric pitches are expressed in sixteenths of an inch as a result a metric #8 chain (08B-1) would be equal to an ANSI #forty. Most roller chain is made from simple carbon or alloy steel, but stainless metal is utilised in foods processing machinery or other spots the place lubrication is a problem, and nylon or brass are occasionally observed for the exact same purpose.

Roller chain is ordinarily hooked up employing a master website link (also acknowledged as a connecting link), which typically has 1 pin held by a horseshoe clip instead than friction fit, allowing it to be inserted or removed with straightforward resources. Chain with a removable hyperlink or pin is also identified as cottered chain, which makes it possible for the duration of the chain to be altered. 50 percent backlinks (also identified as offsets) are offered and are used to boost the length of the chain by a single roller. Riveted roller chain has the master website link (also acknowledged as a connecting hyperlink) “riveted” or mashed on the ends. These pins are created to be resilient and are not detachable.

USE

An example of 2 ‘ghost’ sprockets tensioning a triplex roller chain program
Roller chains are employed in reduced- to mid-velocity drives at around 600 to 800 toes for each minute however, at greater speeds, about 2,000 to 3,000 feet per moment, V-belts are generally utilized due to wear and sounds problems.
A bicycle chain is a form of roller chain. Bicycle chains might have a master hyperlink, or might need a chain device for removal and set up. A similar but more substantial and hence more powerful chain is utilized on most bikes though it is at times changed by either a toothed belt or a shaft travel, which offer you lower sound degree and less servicing requirements.
The wonderful majority of car engines use roller chains to travel the camshaft(s). Extremely substantial efficiency engines frequently use equipment travel, and starting in the early nineteen sixties toothed belts have been utilized by some companies.
Chains are also utilised in forklifts using hydraulic rams as a pulley to CZPT and lower the carriage nevertheless, these chains are not regarded roller chains, but are categorized as elevate or leaf chains.
Chainsaw reducing chains superficially resemble roller chains but are much more closely associated to leaf chains. They are driven by projecting travel backlinks which also provide to locate the chain on to the bar.

Sea Harrier FA.2 ZA195 front (cold) vector thrust nozzle – the nozzle is rotated by a chain push from an air motor
A perhaps strange use of a pair of bike chains is in the Harrier Bounce Jet, the place a chain push from an air motor is used to rotate the movable engine nozzles, making it possible for them to be pointed downwards for hovering flight, or to the rear for standard forward flight, a system recognized as Thrust vectoring.

Dress in

 

The impact of put on on a roller chain is to boost the pitch (spacing of the backlinks), triggering the chain to grow longer. Notice that this is thanks to dress in at the pivoting pins and bushes, not from actual stretching of the metal (as does happen to some flexible steel elements this kind of as the hand-brake cable of a motor vehicle).

With CZPT chains it is strange for a chain (other than that of a bicycle) to put on until it breaks, because a worn chain prospects to the quick onset of dress in on the tooth of the sprockets, with ultimate failure becoming the loss of all the enamel on the sprocket. The sprockets (in distinct the scaled-down of the two) suffer a grinding motion that places a characteristic hook condition into the driven confront of the tooth. (This influence is manufactured even worse by a chain improperly tensioned, but is unavoidable no issue what care is taken). The worn teeth (and chain) no more time gives easy transmission of energy and this may turn into obvious from the sound, the vibration or (in car engines making use of a timing chain) the variation in ignition timing seen with a timing mild. Both sprockets and chain should be replaced in these circumstances, given that a new chain on worn sprockets will not last prolonged. Nonetheless, in less significant instances it could be possible to save the bigger of the 2 sprockets, considering that it is constantly the scaled-down 1 that suffers the most wear. Only in extremely light-weight-weight programs this kind of as a bicycle, or in excessive circumstances of improper stress, will the chain typically jump off the sprockets.

The lengthening due to dress in of a chain is calculated by the adhering to formulation:

M = the duration of a number of links calculated

S = the amount of links measured

P = Pitch

In market, it is common to check the motion of the chain tensioner (whether or not manual or automatic) or the precise length of a drive chain (a single rule of thumb is to change a roller chain which has elongated 3% on an adjustable push or 1.5% on a fixed-centre drive). A simpler method, particularly suitable for the cycle or motorbike consumer, is to endeavor to pull the chain absent from the greater of the 2 sprockets, even though making sure the chain is taut. Any substantial motion (e.g. producing it feasible to see via a gap) probably suggests a chain worn up to and past the restrict. Sprocket harm will consequence if the dilemma is disregarded. Sprocket dress in cancels this effect, and may mask chain wear.

CHAIN Strength

The most widespread measure of roller chain’s energy is tensile energy. Tensile energy represents how significantly load a chain can face up to under a one-time load ahead of breaking. Just as critical as tensile energy is a chain’s tiredness power. The vital variables in a chain’s fatigue energy is the quality of metal utilized to manufacture the chain, the heat remedy of the chain parts, the good quality of the pitch gap fabrication of the linkplates, and the variety of shot additionally the depth of shot peen protection on the linkplates. Other aspects can include the thickness of the linkplates and the design and style (contour) of the linkplates. The rule of thumb for roller chain running on a continuous travel is for the chain load to not CZPT a mere 1/6 or 1/9 of the chain’s tensile energy, depending on the type of master back links employed (press-suit vs. slip-suit)[quotation essential]. Roller chains working on a continuous generate over and above these thresholds can and usually do are unsuccessful prematurely by way of linkplate fatigue failure.

The standard minimal greatest power of the ANSI 29.1 steel chain is 12,five hundred x (pitch, in inches)two. X-ring and O-Ring chains greatly decrease put on by implies of inside lubricants, rising chain existence. The interior lubrication is inserted by means of a vacuum when riveting the chain collectively.

CHAIN STHangZhouRDS

Requirements organizations (this sort of as ANSI and ISO) keep expectations for layout, dimensions, and interchangeability of transmission chains. For instance, the adhering to Desk demonstrates data from ANSI regular B29.1-2011 (Precision Electrical power Transmission Roller Chains, Attachments, and Sprockets) designed by the American Society of Mechanical Engineers (ASME). See the references[8][9][10] for extra info.

ASME/ANSI B29.1-2011 Roller Chain Regular SizesSizePitchMaximum Roller DiameterMinimum Greatest Tensile StrengthMeasuring Load25

ASME/ANSI B29.1-2011 Roller Chain Regular Sizes
Dimensions Pitch Optimum Roller Diameter Bare minimum Ultimate Tensile Energy Measuring Load
25 .250 in (6.35 mm) .130 in (3.30 mm) 780 lb (350 kg) 18 lb (8.2 kg)
35 .375 in (9.fifty three mm) .200 in (5.08 mm) 1,760 lb (800 kg) eighteen lb (8.2 kg)
41 .five hundred in (twelve.70 mm) .306 in (7.77 mm) one,500 lb (680 kg) eighteen lb (8.2 kg)
forty .five hundred in (12.70 mm) .312 in (7.ninety two mm) 3,125 lb (1,417 kg) 31 lb (fourteen kg)
50 .625 in (fifteen.88 mm) .four hundred in (10.16 mm) 4,880 lb (2,210 kg) forty nine lb (22 kg)
60 .750 in (19.05 mm) .469 in (11.ninety one mm) 7,030 lb (3,a hundred ninety kg) 70 lb (32 kg)
80 one.000 in (25.forty mm) .625 in (fifteen.88 mm) twelve,five hundred lb (5,seven hundred kg) 125 lb (fifty seven kg)
a hundred one.250 in (31.75 mm) .750 in (19.05 mm) 19,531 lb (8,859 kg) 195 lb (88 kg)
120 1.500 in (38.ten mm) .875 in (22.23 mm) 28,one hundred twenty five lb (twelve,757 kg) 281 lb (127 kg)
140 1.750 in (44.45 mm) one.000 in (twenty five.40 mm) 38,280 lb (seventeen,360 kg) 383 lb (174 kg)
160 2.000 in (50.80 mm) 1.125 in (28.58 mm) fifty,000 lb (23,000 kg) five hundred lb (230 kg)
180 2.250 in (57.15 mm) 1.460 in (37.08 mm) sixty three,280 lb (28,700 kg) 633 lb (287 kg)
200 2.500 in (63.fifty mm) one.562 in (39.67 mm) 78,one hundred seventy five lb (35,460 kg) 781 lb (354 kg)
240 three.000 in (76.20 mm) one.875 in (47.sixty three mm) 112,five hundred lb (51,000 kg) one,000 lb (450 kg

For mnemonic functions, underneath is another presentation of important proportions from the very same common, expressed in fractions of an inch (which was portion of the thinking behind the choice of favored numbers in the ANSI standard):

Pitch (inches) Pitch expressed
in eighths
ANSI common
chain quantity
Width (inches)
one4 twoeight 25 oneeight
3eight three8 35 316
onetwo foureight 41 1four
12 4eight four 516
58 five8 five threeeight
three4 6eight six 1two
1 88 8 5eight

Notes:
1. The pitch is the distance between roller facilities. The width is the distance in between the hyperlink plates (i.e. marginally more than the roller width to permit for clearance).
2. The proper-hand digit of the standard denotes 0 = normal chain, 1 = lightweight chain, 5 = rollerless bushing chain.
three. The remaining-hand digit denotes the quantity of eighths of an inch that make up the pitch.
four. An “H” adhering to the normal quantity denotes heavyweight chain. A hyphenated number pursuing the standard quantity denotes double-strand (2), triple-strand (3), and so on. As a result 60H-3 denotes amount sixty heavyweight triple-strand chain.
 A common bicycle chain (for derailleur gears) employs slim 1⁄2-inch-pitch chain. The width of the chain is variable, and does not impact the load ability. The far more sprockets at the rear wheel (traditionally 3-6, nowadays 7-twelve sprockets), the narrower the chain. Chains are offered in accordance to the amount of speeds they are made to operate with, for instance, “ten pace chain”. Hub gear or one speed bicycles use 1/2″ x 1/8″ chains, exactly where 1/8″ refers to the highest thickness of a sprocket that can be used with the chain.

Usually chains with parallel formed links have an even variety of backlinks, with each and every slim website link adopted by a broad one particular. Chains constructed up with a uniform kind of url, slender at 1 and wide at the other finish, can be created with an odd variety of hyperlinks, which can be an benefit to adapt to a special chainwheel-length on the other side this kind of a chain tends to be not so strong.

Roller chains created utilizing ISO standard are occasionally known as as isochains.

 

WHY Choose US 

one. Dependable Quality Assurance Technique
2. Slicing-Edge Pc-Controlled CNC Devices
3. Bespoke Options from Extremely Skilled Specialists
four. Customization and OEM Available for Certain Software
5. Extensive Stock of Spare Parts and Equipment
6. Well-Designed Globally Advertising Network
seven. Productive Following-Sale Support Program

 

The 219 sets of superior computerized creation gear provide assures for substantial item good quality. The 167 engineers and professionals with senior skilled titles can style and develop items to meet up with the exact demands of customers, and OEM customizations are also offered with us. Our seem world-wide provider network can offer customers with timely soon after-revenue technological companies.

We are not just a company and provider, but also an industry consultant. We perform professional-actively with you to provide expert tips and merchandise recommendations in purchase to stop up with a most price successful item obtainable for your specific application. The clientele we provide worldwide variety from conclude end users to distributors and OEMs. Our OEM replacements can be substituted wherever necessary and ideal for each mend and new assemblies.

 

 
   

When the sprocket is critically worn, the new sprocket and new chain ought to be replaced at the exact same time to make sure great meshing. The new chain or new sprocket can not be replaced independently, in any other case, it will cause inadequate meshing and accelerate the put on of the new chain or new sprocket. The graphic to the appropriate exhibits the form of the worn sprocket. This can trigger the chain to adhere to the sprockets and not operate smoothly. At this time, the A spot can be floor off or turned above for use (referring to the sprocket utilized for the adjustable area). The sum of dress in at the joint is identified by the size of the chain and the speed of the chain. When the sum of use affects the normal operation of the chain drive, corrective actions should be taken or connected areas ought to be replaced.
Do not mix the old chain with some new chains, normally, vibration will very easily occur for the duration of the transmission approach, which will cause the chain to split.
The chain should be loaded with lubricating oil in time. Lubricating oil should enter the fit clearance of rollers and sleeves to enhance operating problems and lessen wear.
When the machine is saved for a prolonged time, the chain ought to be taken off, cThe part of chain elements
Chain plate
The chain plate is the element that bears the rigidity on the chain and bears repeated masses, sometimes accompanied by shocks. For that reason, the chainplate must not only have static strong tensile energy but also have the ability to endure loads and impacts. In addition, the chainplates need to meet environmental resistance demands (e.g. corrosion, wear, and so on.).
pin
The pin bears the shearing power and bending force transmitted by the chainplate, and in the approach of participating with the sprocket, the pin and the sleeve collectively represent the bearing portion. As a result, the pin requirements high tensile energy, shear strength, bending resistance, and has the characteristics of impact resistance and wear resistance.
sleeve
The sleeves are subjected to shear and bending stresses from the chainplates and rollers, and the sleeves are also subjected to shock masses when the chain is engaged with the sprockets.
Also, when the chain is tensioned, the interior area will type a load-bearing part with the pin. The outer surface area will also sort a load-bearing part with the internal surface area of the roller as it rotates on the keep track of or engages the sprocket. For that reason, it must have high distinct compressive energy, shear power, and influence and dress in resistance.
roller
When the chain meshes with the sprocket, the rollers are impacted by the sprocket teeth. Soon after weaving, the point of make contact with and power among the roller and the sprocket alterations. At this time, the roller is among the sprocket enamel and the sleeve and moves on the tooth surface area under the motion of force.
Additionally, the internal surface area of the roller and the outer floor of the sleeve jointly sort the bearing part when the roller rotates on the guidebook rail. Therefore, it must have wear resistance, impact resistance, fatigue resistance, and a high-force ratio coefficient.
Cotter pin, elastic locking plate, locking pin
These areas avert the outer chain plate from shifting and slipping off following the pin is moved axially. When the chain is running, these areas may collide with other parts on the gear and fall off, so the set up direction and bending angle of these areas are essential.
leaned with kerosene or diesel oil, then coated with oil or butter, and stored in a dry location to avert rust.

China Good quality Short-Pitch 085-2 Precision General Components Components Martin Sugar/Coal Machine Roller Chains with ISO/ASME/DIN/ANSI Common     with high good quality